37,948
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids

, , , , ORCID Icon, & ORCID Icon show all
Pages 116-129 | Received 20 Sep 2019, Accepted 12 Dec 2019, Published online: 24 Jan 2020

References

  • Randrianarison G, Ashraf MA. Microalgae: a potential plant for energy production. Geol Ecol Landscapes. 2017;1(2):104–120.
  • Grahl S, Strack M, Weinrich R, et al. Consumer-oriented product development: the conceptualization of novel food products based on spirulina (arthrospira platensis) and resulting consumer expectations. J Food Qual. 2018;2018:1–11.
  • Khan MI, Shin JH, Kim JD. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact. 2018;17(1):36.
  • Selmani N, Mirghani ME, Alam MZ. Study the growth of microalgae in palm oil mill effluent waste water. in IOP Conference series: earth and environmental science.; Putrajaya, Malaysia: IOP Publishing; 2013.
  • Posadas E, Alcántara C, García-Encina PA, et al. Microalgae-based biofuels and bioproducts. In: Gonzalez-Fernandez C, Muñoz R, editors. Microalgae cultivation in wastewater. Woodhead Publishing; 2017. p. 67–91. DOI:10.1016/B978-0-08-101023-5.00003-0
  • Jegathese SJP, Farid M. Microalgae as a renewable source of energy: A niche opportunity. J Renewable Energy. 2014;2014:1–10.
  • Costa JAV, de Morais MG. An open pond system for microalgal cultivation. In: Pandey A, Lee D-J, Chisti Y, Soccol CR, editors. Biofuels from Algae. Elsevier; 2014. p. 1–22. DOI:10.1016/B978-0-444-59558-4.00001-2
  • Sun Z, Liu J, Zhou Z-G. Algae for biofuels: an emerging feedstock. In: Luque R, Lin CSK, Wilson K, Clark J, editors. Handbook of biofuels production. Woodhead Publishing; 2016. p. 673–698. DOI:10.1016/B978-0-08-100455-5.00022-9
  • Tredici MR. Mass production of microalgae: photobioreactors. Handbook Microalgal Culture. 2004;1:178–214.
  • Borowitzka LJ, Borowitzka MA. Commercial production of β-carotene by dunaliella salina in open ponds. Bull Mar Sci. 1990;47(1):244–252.
  • Stark M, O’Gara I. An introduction to photosynthetic microalgae. Disruptive Sci Technol. 2012;1(2):65–67.
  • Ugwu CU, Aoyagi H. Designs, operation and applications. Biotechnology. 2012;11(3):127–132.
  • Hamed I. The evolution and versatility of microalgal biotechnology: a review. Compr Rev Food Sci Food Saf. 2016;15(6):1104–1123.
  • Shen Y, Yuan W, J. Pei Z, et al. Microalgae mass production methods. Trans ASABE. 2009;52(4):1275–1287.
  • Show P, Tang M, Nagarajan D, et al. A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci. 2017;18(1):215.
  • Lee Y-K. Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol. 2001;13(4):307–315.
  • Lee Y-K. Commercial production of microalgae in the Asia-Pacific rim. J Appl Phycol. 1997;9(5):403–411.
  • Rogers JN, Rosenberg JN, Guzman BJ, et al. A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res. 2014;4:76–88.
  • White RL, Ryan RA. Long-term cultivation of algae in open-raceway ponds: lessons from the field. Ind Biotechnol. 2015;11(4):213–220.
  • Posten C. Design principles of photo‐bioreactors for cultivation of microalgae. Eng Life Sci. 2009;9(3):165–177.
  • Gupta PL, Lee S-M, Choi H-J. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol. 2015;31(9):1409–1417.
  • Mishra AK, Kaushik MS, Tiwari D. Nitrogenase and hydrogenase: enzymes for nitrogen fixation and hydrogen production in cyanobacteria. In: Mishra AK, Tiwari DN, A.N. Rai AN, editors. Cyanobacteria. Academic Press; 2019. p. 173–191. DOI:10.1016/B978-0-12-814667-5.00008-8
  • Xu Z. biological production of hydrogen from renewable resources. In: Yang S-T, editor. Bioprocessing for value-added products from renewable resources. Elsevier; 2007. p. 527–557. DOI:10.1016/B978-044452114-9/50022-0
  • Torzillo G, Zittelli GC. Tubular photobioreactors. In: Algal biorefineries. Switzerland: Springer International Publishing; 2015. p. 187–212.
  • Mohan SV, Rohit MV, Subhash GV, et al. Biofuels from algae. In:  Pandey A, Chang J-S, Soccol CR, Lee D-J, Chisti Y, editors. Algal oils as biodiesel. Elsevier; 2019. p. 287–323. DOI:10.1016/B978-0-444-64192-2.00012-3
  • Rinanti A, Kardena E, Astuti DI, et al. Integrated vertical photobioreactor system for carbon dioxide removal using phototrophic microalgae. Niger J Technol. 2013;32(2):225–232.
  • Huang Q, Jiang F, Wang L, et al. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering. 2017;3(3):318–329.
  • Huo S, Wang Z, Zhu S, et al. Biomass accumulation of Chlorella zofingiensis G1 cultures grown outdoors in photobioreactors. Front Energy Res. 2018;6:49.
  • Tamburic B, Zemichael FW, Crudge P, et al. Design of a novel flat-plate photobioreactor system for green algal hydrogen production. Int J Hydrogen Energy. 2011;36(11):6578–6591.
  • Yan C, Zhang Q, Xue S, et al. A novel low-cost thin-film flat plate photobioreactor for microalgae cultivation. Biotechnol Bioprocess Eng. 2016;21(1):103–109.
  • Sierra E, Acién FG, Fernández JM, et al. Characterization of a flat plate photobioreactor for the production of microalgae. Chem Eng J. 2008;138(1–3):136–147.
  • Vo HN, Ngo HH, Guo W, et al. A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment. SciTotal Environ. 2018;651: 1549–1568.
  • Uduman N, Qi Y, Danquah MK, et al. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renewable Sustainable Energy. 2010;2(1):012701.
  • Barros AI, Gonçalves AL, Simões M, et al. Harvesting techniques applied to microalgae: a review. Renew Sust Energ Rev. 2015;41:1489–1500.
  • Singh G, Patidar S. Microalgae harvesting techniques: a review. J Environ Manage. 2018;217:499–508.
  • Giménez JB, Bouzas A, Carrere H, et al. Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: evaluation of biomass integrity and energy demand. Bioresour Technol. 2018;269:188–194.
  • Zhao F, Chu H, Zhang Y, et al. Increasing the vibration frequency to mitigate reversible and irreversible membrane fouling using an axial vibration membrane in microalgae harvesting. J Membr Sci. 2017;529:215–223.
  • Marbelia L, Mulier M, Vandamme D, et al. Polyacrylonitrile membranes for microalgae filtration: influence of porosity, surface charge and microalgae species on membrane fouling. Algal Res. 2016;19:128–137.
  • Eliseus A, Bilad MR, Nordin NAHM, et al. Tilted membrane panel: a new module concept to maximize the impact of air bubbles for membrane fouling control in microalgae harvesting. Bioresour Technol. 2017;241:661–668.
  • Wenten I, Steven S, Dwiputra A, et al. From lab to full-scale ultrafiltration in microalgae harvesting. in Journal of Physics: Conference Series. 2017. Bandung, Indonesia: IOP Publishing.
  • Zenouzi A, Ghobadian B, Hejazi MA, et al. Harvesting of microalgae Dunaliella salina using electroflocculation. Journal of Agricultural Science and Technology. 2013;15(5):879–887.
  • Hamid SHA, Lananan F, Khatoon H, et al. A study of coagulating protein of Moringa oleifera in microalgae bio-flocculation. Int Biodeterior Biodegrad. 2016;113:310–317.
  • Ndikubwimana T, Zeng X, Murwanashyaka T, et al. Harvesting of freshwater microalgae with microbial bioflocculant: a pilot-scale study. Biotechnol Biofuels. 2016;9(1):47.
  • Kim D-Y, Lee K, Lee J, et al. Acidified-flocculation process for harvesting of microalgae: coagulant reutilization and metal-free-microalgae recovery. Bioresour Technol. 2017;239:190–196.
  • Xu K, Zou X, Wen H, et al. Buoy-bead flotation harvesting of the microalgae Chlorella vulgaris using surface-layered polymeric microspheres: A novel approach. Bioresour Technol. 2018;267:341–346.
  • Zhang X, Wang L, Sommerfeld M, et al. Harvesting microalgal biomass using magnesium coagulation-dissolved air flotation. Biomass Bioenergy. 2016;93:43–49.
  • Luo S, Griffith R, Li W, et al. A continuous flocculants-free electrolytic flotation system for microalgae harvesting. Bioresour Technol. 2017;238:439–449.
  • Alkarawi MA, Caldwell GS, Lee JG. Continuous harvesting of microalgae biomass using foam flotation. Algal Res. 2018;36:125–138.
  • Oliveira GA, Carissimi E, Monje-Ramírez I, et al. Comparison between coagulation-flocculation and ozone-flotation for Scenedesmus microalgal biomolecule recovery and nutrient removal from wastewater in a high-rate algal pond. Bioresour Technol. 2018;259:334–342.
  • Al Hattab M, Ghaly A, Hammoud A. Microalgae harvesting methods for industrial production of biodiesel: critical review and comparative analysis. J Fundam Renewable Energy Appl. 2015;5(2):1000154.
  • Milledge JJ, Heaven S. A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol. 2013;12(2):165–178.
  • Bejor ES, Mota C, Ogarekpe NM, et al. Low-cost harvesting of microalgae biomass from water. Int J Dev Sustain. 2013;2(1):1–11.
  • Soomro RR, Ndikubwimana T, Zeng X, et al. Development of a two-stage microalgae dewatering process–a life cycle assessment approach. Front Plant Sci. 2016;7:113.
  • Dassey AJ, Theegala CS. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour Technol. 2013;128:241–245.
  • Rawat I, Ranjith Kumar R, Mutanda T, et al. Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy. 2013;103:444–467.
  • Heasman M, Diemar J, O’connor W, et al. Development of extended shelf‐life microalgae concentrate diets harvested by centrifugation for bivalve molluscs–a summary. Aquacult Res. 2000;31:637–659.
  • Knuckey RM, Brown MR, Robert R, et al. Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult Eng. 2006;35(3):300–313.
  • Muylaert K, Bastiaens L, Vandamme D, et al. Microalgae-based biofuels and bioproducts. In: Gonzalez-Fernandez C, Muñoz R, editors. Harvesting of microalgae: overview of process options and their strengths and drawbacks. Woodhead Publishing; 2017. p. 113–132. DOI:10.1016/B978-0-08-101023-5.00005-4
  • Bracharz F, Helmdach D, Aschenbrenner I, et al. Harvest of the oleaginous microalgae Scenedesmus obtusiusculus by flocculation from culture based on natural water sources. Front Bioeng Biotechnol. 2018;6:200.
  • Chatsungnoen T, Chisti Y. Harvesting microalgae by flocculation–sedimentation. Algal Res. 2016;13:271–283.
  • Rinanti A, Purwadi R. Harvesting of freshwater microalgae biomass by Scenedesmus sp. as bioflocculant. in IOP Conference Series: Earth and Environmental Science. 2018. Jakarta, Indonesia: IOP Publishing.
  • Salim S, Bosma R, Vermuë MH, et al. Harvesting of microalgae by bio-flocculation. J Appl Phycol. 2011;23(5):849–855.
  • Nguyen TDP, Le TVA, Show PL, et al. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresour Technol. 2019;272:34–39.
  • Pugazhendhi A, Shobana S, Bakonyi P, et al. A review on chemical mechanism of microalgae flocculation via polymers. Biotechnol Reports. 2019;21:e00302.
  • Zhu L, Li Z, Hiltunen E. Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol Biofuels. 2018;11(1):183.
  • Laamanen CA, Ross GM, Scott JA. Flotation harvesting of microalgae. Renew Sust Energ Rev. 2016;58:75–86.
  • Ndikubwimana T, Chang J, Xiao Z, et al. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production. Biotechnol J. 2016;11(3):315–326.
  • Niaghi M, Mahdavi MA, Gheshlaghi R. Optimization of dissolved air flotation technique in harvesting microalgae from treated wastewater without flocculants addition. J Renewable Sustainable Energy. 2015;7(1):013130.
  • Alhattab M, Brooks MS-L. Dispersed air flotation and foam fractionation for the recovery of microalgae in the production of biodiesel. Sep Sci Technol. 2017;52(12):2002–2016.
  • Baierle F, John DK, Souza MP, et al. Biomass from microalgae separation by electroflotation with iron and aluminum spiral electrodes. Chem Eng J. 2015;267:274–281.
  • de Carvalho Neto RG, Do Nascimento JGDS, Costa MC, et al. Microalgae harvesting and cell disruption: a preliminary evaluation of the technology electroflotation by alternating current. Water Sci Technol. 2014;70(2):315–320.
  • Lee SY, Cho JM, Chang YK, et al. Cell disruption and lipid extraction for microalgal biorefineries: A review. Bioresour Technol. 2017;244:1317–1328.
  • Mubarak M, Shaija A, Suchithra T. A review on the extraction of lipid from microalgae for biodiesel production. Algal Res. 2015;7:117–123.
  • Kapoore R, Butler T, Pandhal J, et al. Microwave-assisted extraction for microalgae: from biofuels to biorefinery. Biology (Basel). 2018;7(1):18.
  • Ranjith Kumar R, Hanumantha Rao P, Arumugam M. Lipid extraction methods from microalgae: a comprehensive review. Front Energy Res. 2015;2:61.
  • Ghandi K. A review of ionic liquids, their limits and applications. Green Sustainable Chem. 2014;4(01):44–53.
  • Ratti R. Ionic liquids: synthesis and applications in catalysis. Adv Chem. 2014;2014:16.
  • Wilkes JS. Properties of ionic liquid solvents for catalysis. J Mol Catal A Chem. 2004;214(1):11–17.
  • Tolesa LD, Gupta BS, Lee M-J. The chemistry of ammonium-based ionic liquids in depolymerization process of lignin. J Mol Liq. 2017;248:227–234.
  • Toledo Hijo AA, Maximo GJ, Costa MC, et al. Applications of ionic liquids in the food and bioproducts industries. ACS Sustain Chem Eng. 2016;4(10):5347–5369.
  • Wang B, Qin L, Mu T, et al. Are ionic liquids chemically stable?. Chem Rev. 2017;117(10):7113–7131.
  • Lee SY, Vicente FA, E Silva FA, et al. Evaluating self-buffering ionic liquids for biotechnological applications. ACS Sustain Chem Eng. 2015;3(12):3420–3428.
  • Fujita K, Kobayashi D, Nakamura N, et al. Direct dissolution of wet and saliferous marine microalgae by polar ionic liquids without heating. Enzyme Microb Technol. 2013;52(3):199–202.
  • Chew KW, Chia SR, Lee SY, et al. Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique. Chem Eng J. 2019;367:1–8.
  • Wahidin S, Idris A, Yusof NM, et al. Optimization of the ionic liquid-microwave assisted one-step biodiesel production process from wet microalgal biomass. Energy Convers Manag. 2018;171:1397–1404.
  • Lee SY, Show PL, Ling TC, et al. Single-step disruption and protein recovery from Chlorella vulgaris using ultrasonication and ionic liquid buffer aqueous solutions as extractive solvents. Biochem Eng J. 2017;124:26–35.
  • Zhou W, Wang Z, Alam M, et al. Repeated utilization of ionic liquid to extract lipid from algal biomass. Int J Polym Sci. 2019;2019:1–7.
  • Rodrigues RDP, de Castro FC, Santiago-Aguiar RSD, et al. Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal Res. 2018;31:454–462.
  • Shukla SK, Pandey S, Pandey S. Applications of ionic liquids in biphasic separation: aqueous biphasic systems and liquid–liquid equilibria. J Chromatogr A. 2018;1559:44–61.
  • Lee SY, Khoiroh I, Ooi CW, et al. Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems. Sep Purif Rev. 2017;46(4):291–304.
  • Desai RK, Streefland M, Wijffels RH, et al. Extraction and stability of selected proteins in ionic liquid based aqueous two phase systems. Green Chem. 2014;16(5):2670–2679.
  • Zhang R, Parniakov O, Grimi N, et al. Emerging techniques for cell disruption and extraction of valuable bio-molecules of microalgae Nannochloropsis sp. Bioprocess Biosyst Eng. 2019;42(2):173–186.
  • Shankar M, Chhotaray PK, Gardas RL, et al. Application of carboxylate protic ionic liquids in simultaneous microalgal pretreatment and lipid recovery from marine Nannochloropsis sp. and Chlorella sp. Biomass Bioenergy. 2019;123:14–24.
  • Shankar M, Chhotaray PK, Agrawal A, et al. Protic ionic liquid-assisted cell disruption and lipid extraction from fresh water Chlorella and Chlorococcum microalgae. Algal Res. 2017;25:228–236.
  • Pan J, Muppaneni T, Sun Y, et al. Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel. 2016;178:49–55.
  • Choi S-A, Oh Y-K, Jeong M-J, et al. Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renewable Energy. 2014;65:169–174.
  • Orr VC, Plechkova NV, Seddon KR, et al. Disruption and wet extraction of the microalgae Chlorella vulgaris using room-temperature ionic liquids. ACS Sustain Chem Eng. 2015;4(2):591–600.
  • Choi S-A, Jung J-Y, Kim K, et al. Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101. Bioprocess Biosyst Eng. 2014;37(11):2199–2204.
  • Santos JOH, Trigo JP, Maricato É, et al. Fractionation of isochrysis galbana proteins, arabinans, and glucans using ionic-liquid-based aqueous biphasic systems. ACS Sustain Chem Eng. 2018;6(11):14042–14053.
  • Chang Y-K, Show P-L, Lan JC-W, et al. Isolation of C-phycocyanin from Spirulina platensis microalga using Ionic liquid based aqueous two-phase system. Bioresour Technol. 2018;270:320–327.
  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 2010;14(1):217–232.
  • Kings AJ, Raj RE, Miriam LRM, et al. Cultivation, extraction and optimization of biodiesel production from potential microalgae Euglena sanguinea using eco-friendly natural catalyst. Energy Convers Manag. 2017;141:224–235.
  • Kim Y-H, Choi Y-K, Park J, et al. Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol. 2012;109:312–315.
  • Breil C, Abert Vian M, Zemb T, et al. “Bligh and Dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. Int J Mol Sci. 2017;18(4):708.
  • Zhang Y, Ward V, Dennis D, et al. Efficient extraction of a docosahexaenoic acid (DHA)-rich lipid fraction from Thraustochytrium sp. using ionic liquids. Materials. 2018;11(10):1986.
  • Quader M, Ahmed S Bioenergy with carbon capture and storage (BECCS): future prospects of carbon-negative technologies. In: Rasul MG, Azad AK, Sharma SC, editors. Clean energy for sustainable development. Academic Press; 2017. p. 91–140. DOI:10.1016/B978-0-12-805423-9.00004-1
  • Simas-Rodrigues C, Villela HDM, Martins AP, et al. Microalgae for economic applications: advantages and perspectives for bioethanol. J Exp Bot. 2015;66(14):4097–4108.
  • Teixeira RE. Energy-efficient extraction of fuel and chemical feedstocks from algae. Green Chem. 2012;14(2):419–427.
  • Gao K, Orr V, Rehmann L. Butanol fermentation from microalgae-derived carbohydrates after ionic liquid extraction. Bioresour Technol. 2016;206:77–85.
  • To TQ, Procter K, Simmons BA, et al. Low cost ionic liquid–water mixtures for effective extraction of carbohydrate and lipid from algae. Faraday Discuss. 2017;206:93–112.
  • Garcia ES, van Leeuwen JJA, Safi C, et al. Techno-functional properties of crude extracts from the green microalga tetraselmis suecica. J Agric Food Chem. 2018;66(29):7831–7838.
  • Sekar S, Chandramohan M. Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol. 2008;20(2):113–136.
  • Martins M, Vieira FA, Correia I, et al. Recovery of phycobiliproteins from the red macroalga Gracilaria sp. using ionic liquid aqueous solutions. Green Chem. 2016;18(15):4287–4296.
  • Bhalamurugan GL, Valerie O, Mark L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environ Eng Res. 2018;23(3):229–241.
  • Khoo KS, Lee SY, Ooi CW, et al. Recent advances in biorefinery of astaxanthin from Haematococcus pluvialis. Bioresource technology. 2019;288:121606. DOI:10.1016/j.biortech.2019.121606
  • Miazek K, Kratky L, Sulc R, et al. Effect of organic solvents on microalgae growth, metabolism and industrial bioproduct extraction: a review. Int J Mol Sci. 2017;18(7):1429.
  • Desai RK, Streefland M, Wijffels RH, et al. Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids. Green Chem. 2016;18(5):1261–1267.
  • Safafar H, van Wagenen J, Møller P, et al. Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Mar Drugs. 2015;13(12):7339–7356.
  • Jerez-Martel I, García-Poza S, Rodríguez-Martel G, et al. Phenolic profile and antioxidant activity of crude extracts from microalgae and cyanobacteria strains. J Food Qual. 2017;2017:1–8.
  • Martínez-Francés E, Escudero-Oñate C. Cyanobacteria and microalgae in the production of valuable bioactive compounds. Microalgal Biotechnol. 2018. p. 105.
  • de Morais MG, Vaz BD, de Morais EG, et al. Biologically active metabolites synthesized by microalgae. Biomed Res Int. 2015;2015. DOI:10.1155/2015/835761
  • Sosa-Hernández JE, Romero-Castillo K, Parra-Arroyo L, et al. Mexican microalgae biodiversity and state-of-the-art extraction strategies to meet sustainable circular economy challenges: high-value compounds and their applied perspectives. Mar Drugs. 2019;17(3):174.