2,917
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Experimental design of Al2O3/MWCNT/HDPE hybrid nanocomposites for hip joint replacement

, ORCID Icon, &
Pages 679-692 | Received 22 Apr 2020, Accepted 26 May 2020, Published online: 16 Jun 2020

References

  • Luo Y, Yang L, Tian M Application of biomedical-grade titanium alloys in trabecular bone and artificial joints. In: Biomaterials and medical tribology. Elsevier; 2013. p. 181–216.
  • Patil NA, Njuguna J, Kandasubramanian B. UHMWPE for biomedical applications: performance and functionalization. Eur Polym J. 2020;125:109529.
  • Wang Z, Yan Y, Wang Y, et al. Lifecycle of cobalt-based alloy for artificial joints: from bulk material to nanoparticles and ions due to bio-tribocorrosion. J Mater Sci Technol. 2020;46:98–106.
  • Shankar S, Nithyaprakash R, Sugunesh AP, et al. Experimental and finite element wear study of silicon nitride against alumina for hip implants with bio-lubricant for various gait activities. Silicon; 2020. p. 1–12.
  • Ramakrishna S, Mayer J, Wintermantel E, et al. Biomedical applications of polymer-composite materials: a review. Compos Sci Technol. 2001;61(9):1189–1224.
  • Kirillova A, Ionov L. Shape-changing polymers for biomedical applications. J Mat Chem B. 2019;7(10):1597–1624.
  • Backes EH, Pires LDN, Beatrice CAG, et al. Fabrication of biocompatible composites of poly (lactic acid)/hydroxyapatite envisioning medical applications. Polymer Engineering & Science.
  • Elbasuney S. Green synthesis of hydroxyapatite nanoparticles with controlled morphologies and surface properties toward biomedical applications. J Inorg Organomet Polym Mater. 2020;30(3):899–906.
  • Wu X, Zhang J, Wu C, et al. Study on tribological properties of UHMWPE irradiated by electron beam with TMPTMA and TPGDA as crosslinking agents. Wear. 2013;297(1–2):742–751. .
  • Schwartz CJ, Bahadur S, Mallapragada SK. Effect of crosslinking and Pt–Zr quasicrystal fillers on the mechanical properties and wear resistance of UHMWPE for use in artificial joints. Wear. 2007;263(7–12):1072–1080.
  • Kilgour A, Elfick A. Influence of crosslinked polyethylene structure on wear of joint replacements. Tribol Int. 2009;42(11–12):1582–1594.
  • Wang L, Chen G. Dramatic improvement in mechanical properties of GNs‐reinforced HDPE nanocomposites. J Appl Polym Sci. 2010;116(4):2029–2034.
  • Mohammed MT. Nanocomposites in total hip joint replacements. In: Applications of nanocomposite materials in orthopedics. Elsevier; 2019. p. 221–252.
  • Gupta A, Tripathi G, Lahiri D, et al. Compression molded ultra high molecular weight polyethylene–hydroxyapatite–aluminum oxide–carbon nanotube hybrid composites for hard tissue replacement. J Mater Sci Technol. 2013;29(6):514–522.
  • Xue Y, Wu W, Jacobs O, et al. Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes. Polym Test. 2006;25(2):221–229.
  • Dangsheng X. Friction and wear properties of UHMWPE composites reinforced with carbon fiber. Mater Lett. 2005;59(2–3):175–179.
  • Arash B, Park HS, Rabczuk T. Mechanical properties of carbon nanotube reinforced polymer nanocomposites: A coarse-grained model. Compos Part B Eng. 2015;80:92–100.
  • Liu Y, Sinha SK. Wear performances and wear mechanism study of bulk UHMWPE composites with nacre and CNT fillers and PFPE overcoat. Wear. 2013;300(1–2):44–54.
  • Rahman M, Hoque MA, Rahman GT, et al. Evaluation of thermal, mechanical, electrical and optical properties of metal-oxide dispersed HDPE nanocomposites. Mater Res Express. 2019;6(8):085092. .
  • Wang M, Ladizesky NH, Tanner KE, et al. Hydrostatically extruded HAPEX™. J Mater Sci. 2000;35(4):1023–1030.
  • Hermán V, González G, Noris-Suárez K, et al. Biocompatibility studies of HDPE–HA composites with different HA content. Polym Bull. 2015;72(12):3083–3095.
  • Nath S, Bodhak S, Basu B. Tribological investigation of novel HDPE‐HAp‐Al2O3 hybrid biocomposites against steel under dry and simulated body fluid condition. J Biomed Mater Res A. 2007;83(1):191–208.
  • De Santis R, Gloria A, Ambrosio L Composite materials for hip joint prostheses. In: Biomedical composites. Elsevier; 2017. p. 237–259.
  • Wroblewski B. Wear of the high-density polyethylene socket in total hip arthroplasty and its role in endosteal cavitation. Proc Inst Mech Eng H. 1997;211(1):109–118.
  • Jensen J, Craig JG, Mtalo LB, et al. Clinical field follow-up of high density polyethylene (HDPE)-Jaipur prosthetic technology for trans-femoral amputees. Prosthet Orthot Int. 2004;28(2):152–166. .
  • Simon GP. Polymer blends and alloys. Routledge; 2019.
  • Park HJ, Badakhsh A, Im IT, et al. Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. Appl Therm Eng. 2016;107:907–917.
  • Thirumalai J. Hydroxyapatite: advances in composite nanomaterials, biomedical applications and its technological facets. BoD–Books on Demand; 2018.
  • Gopanna A, et al. Polyethylene and polypropylene matrix composites for biomedical applications. In: Materials for biomedical engineering. Elsevier; 2019. p. 175–216.
  • Parwez K, Budihal SV. Carbon nanotubes reinforced hydroxyapatite composite for biomedical application. J Bionanosci. 2014;8(1):61–65.
  • Zhong YL, Tian Z, Simon GP, et al. Scalable production of graphene via wet chemistry: progress and challenges. Mater Today. 2015;18(2):73–78.
  • Liang W, Wang F, Tay TE, et al. Experimental and analytical investigation of epoxy/MWCNT nanocomposites: electrical, thermal properties, and electric heating behavior. Polymer Engineering & Science; 2019.
  • Arslan M, Dönmez G, Ergün A, et al. Preparation, characterization, and separation performances of novel surface modified LbL composite membranes from polyelectrolyte blends and MWCNT. Polymer Engineering & Science; 2019.
  • Janas D, Koziol K. A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale. 2014;6(6):3037–3045.
  • Armentano I, Fortunati E, Gigli M, et al. Effect of SWCNT introduction in random copolymers on material properties and fibroblast long term culture stability. Polym Degrad Stab. 2016;132:220–230.
  • Morena F, Armentano I, Montanucci P, et al. Design of a nanocomposite substrate inducing adult stem cell assembly and progression toward an epiblast-like or primitive endoderm-like phenotype via mechanotransduction. Biomaterials. 2017;144:211–229.
  • Armentano I, Dottori M, Fortunati E, et al. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab. 2010;95(11):2126–2146.
  • Peponi L, Puglia D, Torre L, et al. Processing of nanostructured polymers and advanced polymeric based nanocomposites. Mater Sci Eng R Rep. 2014;85:1–46.
  • Fortunati E, Puglia D, Armentano I, et al. Food Preservation. In: Multifunctional antimicrobial nanocomposites for food packaging applications. Elsevier, 2017. p. 265–303.
  • Bari SS, Chatterjee A, Mishra S. Biodegradable polymer nanocomposites: an overview. Polymer Rev. 2016;56(2):287–328.
  • Rouf TB, Kokini JL Natural biopolymer-based nanocomposite films for packaging applications. In: Bionanocomposites for packaging applications. Springer; 2018. p. 149–177.
  • Tripathy J Polymer nanocomposites for biomedical and biotechnology applications. In: Properties and applications of polymer nanocomposites. Springer; 2017. p. 57–76.
  • Kuilla T, Bhadra S, Yao D, et al. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35(11):1350–1375.
  • Hu K, Kulkarni DD, Choi I, et al. Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci. 2014;39(11):1934–1972.
  • Mittal G, Dhand V, Rhee KY, et al. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem. 2015;21:11–25.
  • Potts JR, Dreyer DR, Bielawski CW, et al. Graphene-based polymer nanocomposites. Polymer. 2011;52(1):5–25.
  • Du J, Cheng HM. The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys. 2012;213(1011):1060–1077.
  • Fazli A, Moosaei R, Sharif M, et al. Developments of graphene-based polymer composites processing based on novel methods for innovative applications in newborn technologies. Indian J Sci Technol. 2015;8(S9):38–44.
  • Zayed AS, Kamel BM, Abdelsadek Osman T, et al. Experimental study of tribological and mechanical properties of aluminum matrix reinforced by Al2O3 /CNTs. Fuller Nanotub Car Nanostruct. 2019;27(7):538–544.
  • Shirasu K, Yamamoto G, Nelias D, et al. Mechanical and fracture properties of carbon nanotubes. In: Carbon nanotubes-recent progress. IntechOpen; 2017.
  • Shrivastava P, Alam SN, Panda D, et al. Effect of addition of multiwalled carbon nanotube/graphite nanoplatelets hybrid on the mechanical properties of aluminium. Diam Relat Mater. 2020;104:107715.
  • Thomas S, Tom P, Umasankar V. Effect of MWCNT concentration on microstructures, mechanical properties and sintering behaviour of spark plasma sintered AA2219-MWCNT composites. Mater Today Proc. 2020;22:1424–1432.
  • Takenaka Y, Okuda A, Tojo T, et al., Stirring method. Google Patents; 2017.
  • Hirayama S, Hayasaki T, Okano R, et al. Preparation of polymer‐based nanocomposites composed of sustainable organo‐modified needlelike nanoparticles and their particle dispersion states in the matrix. Polymer Engineering & Science; 2019.
  • Li S, Zhang X, Zhao J, et al. Enhancement of carbon nanotube fibres using different solvents and polymers. Compos Sci Technol. 2012;72(12):1402–1407.
  • Rahman MA, Agha H, Truong T-K, et al. Incorporation and orientational order of aligned carbon nanotube sheets on polymer films for liquid crystal-aligning transparent electrodes. J Mol Liq. 2018;267:363–366.
  • Rehani BR, Joshi PB, Lad KN, et al. Crystallite size estimation of elemental and composite silver nano-powders using XRD principles; 2006.
  • Saif MJ, Naveed M, Asif HM, et al. Irradiation applications for polymer nano-composites: A state-of-the-art review. J Ind Eng Chem. 2018;60:218–236.
  • Kong Q, Wu T, Zhang J, et al. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos Sci Technol. 2018;154:136–144.
  • Xu K, ZhouH, Hu Q, et al. Molecular insights into chain length effects of hindered phenol on the molecular interactions and damping properties of polymer‐based hybrid materials. Polymer Engineering & Science; 2019.
  • Kutuk M, Oguz Z. A research on effect of sewage sludge ash on the mechanical properties of composite material. In: World congress on civil, struct., and environment engineering (CSEE’16); 2016.
  • He X, Zhuang ZC, Cao T, et al. Relationship analysis between vickers hardness and yield stress of structure material. J Xi’an Uni Sci Technol. 2017;37(2):274–279.
  • Lee G, Choi H. Study on interfacial transition zone properties of recycled aggregate by micro-hardness test. Constr Build Mater. 2013;40:455–460.
  • Vyazovkin S, Koga N, Schick C. Handbook of thermal analysis and calorimetry: recent advances, techniques and applications. Vol. 6. Elsevier; 2018.
  • Guo Y, Xu G, Yang X, et al. Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C. 2018;6(12):3004–3015.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1–2):55–63.
  • Thabrew MI, HUGHES RD, MCFARLANE IG. Screening of hepatoprotective plant components using a HepG2 cell cytotoxicity assay. J Pharm Pharmacol. 1997;49(11):1132–1135.
  • El-Menshawi BS, Fayad W, Mahmoud K, et al. Screening of natural products for therapeutic activity against solid tumors; Indian J Exp Biol. 201048(3):258–264.
  • Patel AK, Trivedi P, Balani K. Processing and mechanical characterization of compression-molded ultrahigh molecular weight polyethylene biocomposite reinforced with aluminum oxide. J NanoSci NanoEng Appl. 2014;4(3):1–11.
  • Wang Y-H, Wang W-H, Zhang Z, et al. Study of the glass transition temperature and the mechanical properties of PET/modified silica nanocomposite by molecular dynamics simulation. Eur Polym J. 2016;75:36–45.
  • Saba N, Jawaid M, Alothman OY, et al. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr Build Mater. 2016;106:149–159.
  • Jin-hua T, Guo-qin L, Huang C, et al. Mechanical properties and thermal behaviour of LLDPE/MWNTs nanocomposites. Mater Res. 2012;15(6):1050–1056.
  • Kanagaraj S, Varanda FR, Zhil’tsova TV, et al. Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol. 2007;67(15–16):3071–3077. .
  • Dai L, Sun J. Mechanical properties of carbon nanotubes-polymer composites. In: Carbon nanotubes–current progress of their polymer composites. InTechOpen; 2016. p. 155–194.
  • Pramanik N, Tarafdar A, Pramanik P. Capping agent-assisted synthesis of nanosized hydroxyapatite: comparative studies of their physicochemical properties. J Mater Process Technol. 2007;184(1–3):131–138.
  • Akmil N, Luqman C, Ahmad M, et al. Improved mechanical properties of HDPE/nano-alumina composite through silane coupling agent. In: AIP Conference Proceedings. American Institute of Physics; 2012.
  • Lozovyi F, Ivanenko K, Nedilko S, et al. Thermal analysis of polyethylene+ X% carbon nanotubes. Nanoscale Res Lett. 2016;11(1):1–7.
  • Guedes RM. Creep and fatigue in polymer matrix composites. Woodhead Publishing; 2019.
  • Lofrano G, Carotenuto M, Libralato G, et al. Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Res. 2016;92:22–37.
  • Ghasemi E, Kord B. Long-term water absorption behaviour of polypropylene/wood flour/organoclay hybrid nanocomposite. 2009.
  • Aslantürk ÖS. In vitro cytotoxicity and cell viability assays: principles, advantages, and disadvantages. Vol. 2. InTech; 2018.