1,108
Views
2
CrossRef citations to date
0
Altmetric
Special Issue for International conference IBCC-2020

An effective method for Agrobacterium tumefaciens-mediated transformation of Jatropha curcas L. using cotyledon explants

, , , & ORCID Icon
Pages 1146-1158 | Received 21 Aug 2020, Accepted 28 Sep 2020, Published online: 19 Oct 2020

References

  • Ha J, Shim S, Lee T, et al. Genome sequence of Jatropha curcas L., a non-edible biodiesel plant, provides a resource to improve seed-related traits. Plant Biotechnol J. 2019;17(2):517–530.
  • Menezes RG, Rao NG, Karanth SS, et al. Jatropha curcas poisoning. Indian J Pediatr. 2005;72(1):75–76.
  • Adebowale KO, Adedire CO. Chemical composition and insecticidal properties of the underutilized Jatropha curcas seed oil. Afr J Biotechnol. 2006;5(10):901–906.
  • Ghosh A, Chaudhary DR, Reddy MP, et al. Prospects for Jatropha methyl ester (biodiesel) in India. Int J Environ Stud. 2007;64(6):659–674.
  • Wu PZ, Zhou CP, Cheng SF, et al. Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J. 2015;81(5):810–821.
  • Novatiano C, Pancoro A, Marwani E. Agrobacterium tumefaciens-mediated transformation of Jatropha curcas L. with a polyhydroxyalkanoate gene (phaC). Indones J Biotechnol. 2018;22(2):61–67.
  • Fufa H, Tesema M, Daksa J. In vitro regeneration protocol through direct organogenesis for Jatropha curcas L. (Euphorbiaceae) accessions in Ethiopia. Afr J Biotechnol. 2019;18(31):991–1003.
  • El-Sayed M, Aly UI, Mohamed MS, et al. In vitro regeneration and molecular characterization of Jatropha curcas plant. B Nat Res Centre. 2020;44(1):1–12.
  • Liu Y, Yu L, Zhan Q, et al. High concentration short duration treatment of benzyladenine stimulates adventitious bud regeneration from hypocotyl explants in soybean. Adv Mater Res. 2013;647(1):331–335.
  • Liu Y, Tong X, Hui WK, et al. Efficient culture protocol for plant regeneration from petiole explants of physiologically mature trees of Jatropha curcas L. Biotechnol Biotec Eq. 2015;29(3):479–488.
  • Liu Y, Yin XG, Lu JN, et al. An efficient protocol for inducing regeneration in physic nut (Jatropha curcas L.). Bangl J Bot. 2016;45(4):87–93.
  • Li MR, Li HQ, Jiang HW, et al. Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tiss Org. 2008;92(2):173–181.
  • Pan JL, Fu QT, Xu ZF. Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection. Afr J Biotechnol. 2010;9(39):6477–6481.
  • Misra P, Toppo DD, Mishra MK, et al. Agrobacterium tumefaciens-mediated transformation protocol of Jatropha curcas L. using leaf and hypocotyl segments. J Plant Biochem Biotechnol. 2012;21(1):128–133.
  • Qu J, Mao HZ, Chen W, et al. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels. 2012;5(1):1–11.
  • Fu Q, Li C, Tang M, et al. An efficient protocol for Agrobacterium-mediated transformation of the biofuel plant Jatropha curcas, by optimizing kanamycin concentration and duration of delayed selection. Plant Biotechnol Rep. 2015;9(6):405–416.
  • Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–479.
  • Khemkladngoen N, Cartagena J, Shibagaki N, et al. Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing plant Jatropha curcas L. J Biosci Bioeng. 2011;111(1):67–70.
  • Kumar N, Reddy MP. Thidiazuron (TDZ) induced plant regeneration from cotyledonary petiole explants of elite genotypes of Jatropha curcas: a candidate biodiesel plant. Ind Crop Prod. 2012;39(1):62–68.
  • Jefferson RA. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep. 1987;5(4):387–405.
  • Hofgen R, Willmitzer L. Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 1988;16(20):9877.
  • Khemkladngoen N, Cartagena JA, Fukui K. Physical wounding-assisted Agrobacterium-mediated transformation of juvenile cotyledons of a biodiesel-producing plant, Jatropha curcas L. Plant Biotechnol Rep. 2011;5(3):235–243.
  • Li YH, Yang YQ, Liu Y, et al. Overexpression of OsAGO1b induces adaxially rolled leaves by affecting leaf abaxial sclerenchymatous cell development in rice. Rice. 2019;12(1):1–22.
  • Rohela GK, Jogam P, Bylla P, et al. Indirect regeneration and assessment of genetic fidelity of acclimated plantlets by SCoT, ISSR, and RAPD markers in Rauwolfia tetraphylla L.: an endangered medicinal plant. BioMed Res Int. 2019;2019(1):1–14.
  • Savitikadi P, Jogam P, Rohela GK, et al. Direct regeneration and genetic fidelity analysis of regenerated plants of Andrographis echioides (L.) - An important medicinal plant. Ind Crop Prod. 2020;155(1):112766.
  • Wei Q, Lu WD, Liao Y, et al. Plant regeneration from epicotyl explant of Jatropha curcas. J Plant Physiol Mol Biol. 2004;30(4):475–478.
  • Jaganath B, Subramanyam K, Mayavan S, et al. An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting. Protoplasma. 2014;251(3):591–601.
  • Macan GPF, Cardoso JC. In vitro grafting of Psidium guajava in Psidium cattleianum for the management of the Meloidogyne enterolobii. Int J Fruit Sci. 2019;20(2):106–116.
  • Pahnekolayi MD, Tehranifar A, Samiei L, et al. Optimizing culture medium ingredients and micrografting devices can promote in vitro micrografting of cut roses on different rootstocks. Plant Cell Tiss Org. 2019;137(5):265–274.
  • Jin SX, Liang SG, Zhang XL, et al. An efficient grafting system for transgenic plant recovery in cotton (Gossypium hirsutum L.). Plant Cell Tiss Org. 2006;85(2):181–185.
  • Borchetia S, Das SC, Handique PJ, et al. High multiplication frequency and genetic stability for commercialization of the three varieties of micropropagated tea plants (Camellia spp.). Sci Hortic. 2009;120(4):544–550.
  • Kumar N, Anand KG, Reddy MP. In vitro regeneration from petiole explants of non-toxic Jatropha curcas. Ind Crop Prod. 2011;33(1):146–151.
  • Hlozáková TK, Polóniová Z, Moravíková J. Feasibility of hygromycin as a selection agent in Agrobacterium-mediated transformation of oilseed rape (Brassica napus L.). J Microbiol Biotechnol Food. 2018;3(2):80–83.
  • Yang X, Yu X, Zhou Z, et al. A high-efficiency Agrobacterium tumefaciens mediated transformation system using cotyledonary node as explants in soybean (Glycine max L.). Acta Physiol Plant. 2016;38(3):1–10.
  • De Vetten N, Wolters AA, Raemakers K, et al. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol. 2003;21(4):439–442.
  • Woo HJ, Qin Y, Park SY, et al. Development of selectable marker-free transgenic rice plants with enhanced seed tocopherol content through FLP/FRT-mediated spontaneous auto-excision. PLoS One. 2015;10(7):e0132667.
  • Guo WC, Wang ZA, Luo XL, et al. Development of selectable marker-free transgenic potato plants expressing cry3A against the Colorado potato beetle (Leptinotarsa decemlineata Say). Pest Manag Sci. 2016;72(3):497–504.
  • Costa LD, Piazza S, Campa M, et al. Efficient heat-shock removal of the selectable marker gene in genetically modified grapevine. Plant Cell Tiss Org. 2016;124(1):471–481.