1,381
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Optimization of alkali-treated poplar fiber saccharification using metal ions and surfactants

ORCID Icon, , , &
Pages 138-150 | Received 08 Oct 2020, Accepted 25 Nov 2020, Published online: 22 Dec 2020

References

  • Purohit P, Dhar S. Lignocellulosic biofuels in India: current perspectives, potential issues and future prospects. AIMS Energy. 2018;6(3):453–486.
  • Field CB, Elliott Campbell J, Lobell DB. Biomass energy: the scale of the potential resource. Trends Ecol Evol. 2008;23(2):65–72.
  • Andreas W, Nina L, Mira M, et al. Biological pretreatment strategies for second-generation lignocellulosic resources to enhance biogas production. Energies. 2018;11(7):1797–1810.
  • Tingting L, Lulu L, Minjing W, et al. The effect of poplar PsnGS1.2 overexpression on growth, secondary cell wall, and fiber characteristics in tobacco. Front Plant Sci. 2018;9(9):1–13.
  • Lee JY, Li P, Lee J, et al. Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour Technol. 2013;127(9):119–125.
  • Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: areview. Int J Mol Sci. 2008;9(9):1621–1651.
  • Zubrowska SM, Walczak J. Effects of mechanical disintegration of activated sludge on the activity of nitrifying and denitrifying bacteria and phosphorus accumulating organisms. Water Res. 2014;61(5):200–209.
  • Nai C, Meyer V. From axenic to mixed cultures: technologicaladvances accelerating a paradigm shift in microbiology. Trends Microbiol. 2017;26(6):2–5.
  • Guo G, J C C, Gong G. Injection molding of polypropylene hybrid composites reinforced with carbon fiber and wood fiber. Polym Composites. 2018;39(9):3329–3335.
  • Mcintosh S, Vancov T. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour Technol. 2010;101(17):6718–6727.
  • Yu H, You Y, Lei F, et al. Comparative study of alkaline hydrogen peroxide and organosolv pretreatments of sugarcane bagasse to improve the overall sugar yield. Bioresour Technol. 2015;187(Complete):161–166.
  • Sukumaran RK, Singhania RR, Mathew GM, et al. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energ. 2009;34(2):421–424.
  • Pei H, Yilin S, Lixia K. Effects of metal ions on the activity of cellulase produced by pleurotus ostreatus and pleurotus eryngii. Meteorol Environ Res. 2015;6(10):34–36.
  • Okonkwo I. Effect of metal ions and enzyme inhibitor on the activity of cellulase enzyme of aspergillus flavus. Int J Environ Agric Biotechnol. 2019;4(3):727–734.
  • Deying L, Dachun G, Yihong T, et al. Study on the effect of metal ions on cellulase activity. Brew Technol. 2009;30(6):40–42. 46.
  • Chao W, Lu H, Li P. Effects of inorganic ions and Nonionic surfactants on the activity of acid cellulase. Modern Food Sci Technol. 2009;25(2):152–156.
  • Pradipta NN, Irawati D Reducing sugar production of 3 species mushrooms spent media for bioethanol. International Energy Conference Astechnova 2019. Yogyakarta, Indonesia. 2020.
  • Luciano Silveira MH, Rau M, Elba PDSB, et al. A simple and fast method for the determination of endo and exo-cellulase activity in cellulase preparations using filter paper. Enzyme Microb Technol. 2012;51(5):280–285.
  • Jain A, Jain R, Jain S. Quantitative analysis of reducing sugars by 3, 5-dinitrosalicylic acid (DNSA Method), Basic Tech Biochem Microbiol Mol Biol. 2020.
  • Zhang Y, Xu JL, Qi W, et al. A fractal-like kinetic equation to investigate temperature effect on cellulose hydrolysis by free and immobilized cellulase. Appl Biochem Biotechnol. 2012;168(1):144–153.
  • Budihal SR, Agsar D, Patil SR. Enhanced production and application of acidothermophilic streptomyces cellulase. Bioresour Technol. 2016;200:706–712.
  • Li C, Yang Z, Zhang RHC, et al. Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis. J Biotechnol. 2013;168(4):470–477.
  • Lou H, Zhu JY, Lan TQ, et al. pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem. 2013;6(5):919–927.
  • Junying W, Baiquan Z, Jienan CJ, et al. Combination of xylanase and cellulase hydrolysis for enhanced saccharification of poplar chips: process optimization. BioRes. 2020;15(1):840–853.
  • Rahnama N, Foo H, Abdul Rahman N, et al. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production. BMC Biotechnol. 2014;14(1):103–114.
  • Meng-Ru J, Xi-Chang W, H U X-Q, et al. Optimization of cellulase extraction of Sparassis crispa polysaccharides using response surface methodology. Sci Technol Food Ind. 2016;37(20):201–205.
  • Ge W, Xiao W, Wang L, et al. The activity and kinetic properties of cellulases in substrates containing metal ions and acid radicals. Adv Biol Chem. 2012;2(4):390–395. .
  • Orji FA, Fashola F, Lawal AK, et al. Identification of co-factor behaviour of manganese ion on cellulase from atoxigenic aspergillus flavus M15 strain. Niger J Microbiol. 2016;30(2):3080–3586.
  • Yang M, Zhang A, Liu B, et al. Improvement of cellulose conversion caused by the protection of Tween-80 on the adsorbed cellulase. Biochem Eng J. 2011;56(3):125–129.
  • Pérez J, Mu Oz-Dorado J, Rubia TDL, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol. 2002;5(2):53–63.
  • Ramaiah SK, Thimappa GS, Nataraj LK, et al. Optimization of oxalic acid pre-treatment and enzymatic saccharification in Typha latifolia for production of reducing sugar. J Genet Eng Biotechnol. 2020;18(28):1–9.
  • Phwan CK, Chew KW, Sebayang AH, et al. Effects of acids pre-treatment on the microbial fermentation process for bioethanol production from microalgae[J]. Biotechnol Biofuels. 2019;12(1):1–8.
  • Na L, Jienan C, Peng Z, et al. Optimization of mixed enzymolysis of acid-exploded poplar wood residues for directional bioconversion: process optimization. BioRes. 2020;15(1):1945–1958.