33,056
Views
355
CrossRef citations to date
0
Altmetric
Review

A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater

, , ORCID Icon, , , , & show all
Pages 70-87 | Received 06 Oct 2020, Accepted 08 Dec 2020, Published online: 28 Dec 2020

References

  • Das A, Dey A. P-Nitrophenol-Bioremediation using potent Pseudomonas strain from the textile dye industry effluent. J Environ Chem Eng. 2020;8(4):103830.
  • Sivasubramaniam D, Franks AE. Bioengineering microbial communities: their potential to help, hinder and disgust. Bioengineered. 2016;7:137–144.
  • Lakshmi S, Suvedha K, Sruthi R, et al. Hexavalent chromium sequestration from electronic waste by biomass of Aspergillus carbonarius. Bioengineered. 2020;11(1):708–717.
  • Varjani SJ, Upasani VN. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol. 2017;232:389–397.
  • Rajkumar D, Kim J. Oxidation of various reactive dyes with in situ electro-generated active chlorine for textile dyeing industry wastewater treatment. J Hazard Mater. 2006;136(2):203–212.
  • Mahapatra NN. Textile dyes. New Delhi, India: CRC Press, WPI; 2016.
  • Hassan MM, Carr CM. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere. 2018;209:201–219.
  • Bhatia SC. Pollution control in textile industry. Delhi, India: WPI; 2017. ( Survesh Devraj, (ed.)).
  • Orts F, Del Río AI, Molina J, et al. Electrochemical treatment of real textile wastewater: Trichromy Procion HEXL@. J Electroanal Chem. 2018;808:387–394.
  • Wang DM. Environmental protection in clothing industry. In: Zhu L, Ouadha A, editors. sustainable development: proceedings of the 2015 International Conference on sustainable development (ICSD2015). Singapore: World Scientific. 2016. p. 729–735. DOI:10.1142/9789814749916_0076.
  • Akhtar S, Baig SF, Saif S, et al. Five year carbon footprint of a textile industry: A podium to incorporate sustainability. Nat Environ Pollut Technol. 2017;16:125–132.
  • Aquino JM, Rocha-Filho RC, Ruotolo LAM, et al. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem Eng J. 2014;251:138–145.
  • Khatri J, Nidheesh PV, Singh ATS, et al. Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chem Eng J. 2018;348:67–73.
  • Saravanan R, Gupta VK, Mosquera E, et al. Visible light induced degradation of methyl orange using βAg0.333V2O5 nanorod catalysts by facile thermal decomposition method. J Saudi Chem Soc. 2015;19:521–527.
  • Imran M, Crowley DE, Khalid A, et al. Microbial biotechnology for decolorization of textile wastewaters. Rev Environ Sci Biotechnol. 2014;4:73–92.
  • Mahmood F, Shahid M, Hussain S, et al. Potential plant growth-promoting strain Bacillus sp. SR-2-1/1 decolorized azo dyes through NADH-ubiquinone: oxidoreductase activity. Bioresour Technol. 2017;235:176–184.
  • Rehman K, Shahzad T, Sahar A, et al. Effect of reactive black 5 azo dye on soil processes related to C and N cycling. PeerJ. 2018. DOI:10.7717/peerj.4802.
  • Shafqat M, Khalid A, Mahmood T, et al. Evaluation of bacteria isolated from textile wastewater and rhizosphere to simultaneously degrade azo dyes and promote plant growth. J Chem Technol Biotechnol. 2017;92(10):2760–2768.
  • Anas M, Han-Dong S, Mahmoud K, et al. Photocatalytic degradation of organic dye using titanium dioxide modified with metal and non-metal deposition. Mater Sci Semicond Process. 2016;41:209–218.
  • Vidales MJM, Nieto-Márquez A, Morcuende D, et al. 3D printed floating photocatalysts for wastewater treatment. Catal Today. 2019;328:157–163.
  • Bharathiraja B, Selvakumari IAE, Iyyappan J, et al. Itaconic acid: an effective sorbent for removal of pollutants from Dye Industry effluent. Curr Opinion Environ Sci Health. 2019;12:6–17.
  • Foteinis S, Monteagudo JM, Durán A, et al. Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale. Sci Total Environ. 2018;612:605–612.
  • Khaki MRD, Shafeeyan MS, Raman AAA, et al. Evaluating the efficiency of nano-sized Cu doped TiO2/ZnO photocatalyst under visible light irradiation. J Mol Liq. 2018;258:354–365.
  • Yu A, Wang Q, Wang J, et al. Rapid synthesis of colloidal silver triangular nanoprisms and their promotion of TiO2 photocatalysis on methylene blue under visible light. Catal Commun. 2017;90:75–78.
  • Choo KH, Choi SJ, Hwang ED. Effect of coagulant types on textile wastewater reclamation in a combined coagulation/ultrafiltration system. Desalination. 2007;202(1–3):262–270.
  • Madhav S, Ahamad A, Singh P, et al. A review of textile industry: wet processing, environmental impacts, and effluent treatment methods. Environ Qual Manag. 2018;27(3):31–41.
  • Sarayu K, Sandhya S. Current technologies for biological treatment of textile wastewater-a review. Appl Biochem Biotechnol. 2012;167(3):645–661.
  • Maiti S. Biotechnology in textile wet processing. Glo J Biomed Sci. 2018;2:7–13.
  • Harane RS, Adivarekar RV. Sustainable processes for pre-treatment of cotton fabric. Text Cloth Sustain. 2017;2:2.
  • Chatha SA, Asgher M, Iqbal HM. Enzyme-based solutions for textile processing and dye contaminant biodegradation-a review. Environ Sci Pollut Res. 2017;24(16):14005–14018.
  • Sarayu K, Sandhya S. Aerobic biodegradation pathway for Remazol Orange by Pseudomonas aeruginosa. Appl Biochem Biotechnol. 2010;160(4):1241–1253.
  • Shah M, Banerjee A. Combined application of physico-chemical microbiological processes for industrial effluent treatment plant. Singapore: Springer; 2020. DOI:10.1007/978-981-15-0497-6.
  • Correia VM, Stephenson T, Judd JS. Characterisation of textile wastewaters - a review. Environ Technol. 1994;15(10):917–929.
  • Ghaly AE, Ananthashankar R, Alhattab MVVR, et al. Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol. 2014;5:1–18.
  • Babu BR, Parande AK, Raghu S, et al. Cotton textile processing: waste generation and effluent treatment. Text Technol. 2007;11:141–153.
  • Holkar CR, Jadhav AJ, Pinjari DV, et al. A critical review on textile wastewater treatments: possible approaches. J Environ Manag. 2016;182:351–366.
  • Kant R. Textile dyeing industry an environmental hazard. Nat Sci. 2012;4:22–26.
  • Saxena G, Bharagava RN. Organic and inorganic pollutants in industrial wastes: ecotoxicological effects, health hazards and bioremediation approaches. In: Bharagava RN, editor. Environmental pollutants and their bioremediation approaches. Uttar Pradesh, India: CRC Press; 2017. p. 23–56. DOI:10.1201/9781315173351-3.
  • Yaseen DA, Scholz M. Shallow pond systems planted with Lemna minor treating azo dyes. Ecol Eng. 2016;94:295–305.
  • Yaseen DA, Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol. 2018;16:1193–1226.
  • Popli S, Patel UD. Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. Int J Environ Sci Technol. 2014;12(1):405–420.
  • Carmen Z, Daniela S. Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents-a critical overview. In: Organic pollutants ten years after the stockholm convention environmental and analytical update. Vol. 10. 2012. p. 32373.  london, UK: Intech Open.
  • Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation: A review. J Environ Manage. 2018;210:10–22.
  • Khan S, Malik A. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ Sci Pollut Res Int. 2018;25(5):4446–4458.
  • Shakeel M, Imran M, Ashraf M, et al. Biodegradation by co‐inoculated bacteria and fungi alleviates adverse effects of red‐S3B on growth and nitrogen uptake of wheat. Clean–Soil, Air, Water. 2020;48(3):1900305.
  • Petrakis EA, Cagliani LR, Tarantilis PA, et al. Sudan dyes in adulterated saffron (Crocus sativus L.): identification and quantification by 1H NMR. Food Chem. 2017;217:418–424.
  • Piatkowska M, Jedziniak P, Olejnik M, et al. Absence of evidence or evidence of absence? A transfer and depletion study of Sudan I in eggs. Food Chem. 2018;239:598–602.
  • Duman O, Tunc S, Polat TG. Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent. Micropor Mesopor Mat. 2015;210:176–184.
  • Foguel MV, Ton XA, Zanoni MV, et al. A molecularly imprinted polymer-based evanescent wave fiber optic sensor for the detection of basic red 9 dye. Sensor Actuat B-Chem. 2015;218:222–228.
  • Lacasse K, Baumann W. Textile chemicals: environmental data and facts. Dortmund: Springer; 2012.
  • Sivarajasekar N, Baskar R. Adsorption of basic red 9 on activated waste Gossypium hirsutum seeds: process modeling, analysis and optimization using statistical design. J Ind Eng Chem. 2014;20(5):2699–2709.
  • Atul K, Pratibha C, Poonam V. A ccomparative study on the treatment methods of textile dye effluents. J Chem Pharm Res. 2012;4(1):763–771.
  • Mandal B, Purkayastha A, Prabhu AA, et al. Development in wastewater treatment plant design. Emerging Technol Environ Bioremediation. 2020;311–321. DOI:10.1016/B978-0-12-819860-5.00013-4.
  • Khouni I, Marrot B, Moulin P, et al. Decolourization of the reconstituted textile effluent by different process treatments: enzymatic catalysis, coagulation/flocculation and nanofiltration processes. Desalination. 2011;268(1–3):27–37.
  • Ghaly AE, Ananthashankar R, Alhattab M, et al. Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Technol. 2013;5:182.
  • Thamaraiselvan C, Noel M. Membrane processes for dye wastewater treatment: recent progress in fouling control in critical reviews. Environ Sci Technol. 2015;45(10):1007–1040.
  • Xue F, Tang B, Bin L, et al. Residual micro organic pollutants and their biotoxicity of the effluent from the typical textile wastewater treatment plants at Pearl River Delta. Sci Total Environ. 2019;657:696–703.
  • Ahmad A, Mohd-Setapar SH, Chuong CS, et al. Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater. RSC Adv. 2015;5(39):30801–30818.
  • Rott U, Minke R. Overview of wastewater treatment and recycling in the textile processing industry. Water Sci Technol. 1999;40:137–144.
  • Varjani S, Joshi R, Srivastava VK, et al. Treatment of wastewater from petroleum industry: current practices and perspectives. Env Sci Pollut Res. 2019;1–9. DOI:10.1007/s11356-019-04725-x.
  • Mani S, Chowdhary P, Bharagava RN. Textile wastewater dyes: toxicity profile and treatment approaches. In: Bharagava R, Chowdhary P, editors. Emerging and eco-friendly approaches for waste management. Singapore: Springer; 2018. p. 219–244. DOI:10.1007/978-981-10-8669-4_11.
  • Goh PS, Wong TW, Lim JW, et al. Innovative and sustainable membrane technology for wastewater treatment and desalination application. In: Galanakis CM, editor. Innovation strategy in environmental science. Netherlands: Elsevier; 2020. p. 291–319. DOI:10.1016/B978-0-12-817382-4.00009-5.
  • Singh K, Arora S. Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. critical reviews. Environ Sci Technol. 2011;41(9):807–878.
  • Wu B. Membrane-based technology in greywater reclamation: A review. Sci Total Environ. 2019;656:184–200.
  • Aouni A, Fersi C, Cuartas-Uribe B, et al. Reactive dyes rejection and textile effluent treatment study using ultrafiltration and nanofiltration processes. Desalination. 2012;297:87–96.
  • Cao XL, Yan YN, Zhou FY, et al. Tailoring nanofiltration membranes for effective removing dye intermediates in complex dye-wastewater. J Membr Sci. 2019;595:117476.
  • Tang C, Chen V. Nanofiltration of textile wastewater for water reuse. Desalination. 2002;143(1):11–20.
  • He Y, Li G, Wang H, et al. Diafiltration and water recovery of Reactive Brilliant Blue KN-R solution by two-stage membrane separation process. Chem Eng Process. 2010;49(5):476–483.
  • Bahramian A, Rezaeivala M, He K, et al. Enhanced visible-light photoelectrochemical hydrogen evolution through degradation of methyl orange in a cell based on coral-like Pt-deposited TiO2 thin film with sub-2 nm pores. Catal Today. 2018;335:333–344.
  • Huang D, Hu C, Zeng G, et al. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci Total Environ. 2017;574:1599–1610.
  • Upadhyay GK, Rajput JK, Pathak TK, et al. Tailoring and optimization of hybrid ZnO:TiO2: cdOnanomaterials for advance oxidation process under visible light. Appl Surf Sci. 2020;509:145326.
  • Thanavel M, Kadam SK, Biradar SP, et al. Combined biological and advanced oxidation process for decolorization of textile dyes. SN Appl Sci. 2018;1:97.
  • Pandey S, Mandari KK, Kim J, et al. Recent advancement in visible‐light‐responsive photocatalysts in heterogeneous photocatalytic water treatment technology. In: Fosso‐Kankeu E, Pandey S, Ray SS, editors. Photocatalysts in advanced oxidation processes for wastewater treatment. 2020. p. 167–196. Hoboken, USA: Wiley Online Library. DOI:10.1002/9781119631422.ch6.
  • Rauf MA, Ashraf SS. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem Eng J. 2009;151:1–3.
  • Covei M, Perniu D, Bogatu C, et al. CZTS-TiO2 thin film heterostructures for advanced photocatalytic wastewater treatment. Catal Today. 2019;321-322:172–177.
  • Beluci NDCL, Mateus GAP, Miyashiro CS, et al. Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TIO2-modified membranes to improve the removal of reactive black 5 dye. Sci Total Environ. 2019;664:222–229.
  • Alakhras F, Alhajri E, Haounati R, et al. A comparative study of photocatalytic degradation of Rhodamine B using natural-based zeolite composites. Surf Interfaces. 2020;20:100611.
  • Hassan A, Asad M, Jechan L, et al. Photocatalysts for degradation of dyes in industrial effluents: opportunities and challenges. Nano Res. 2019;2(5):955–972.
  • Riaz N, Chong F, Man Z, et al. Preparation, characterization and application of Cu-Ni/TiO2 in Orange II photodegradation under visible light: effect of different reaction parameters and optimization. RSC Adv. 2016;6:55650–55665.
  • Riaz N, Chong FK, Dutta BK, et al. Photodegradation of Orange II under visible light using Cu–Ni/TiO2: effect of calcination temperature. Chem Eng J. 2012;185-186:108–119.
  • Riaz N, Chong FK, Man ZB, et al. Photodegradation of Orange II under visible light using Cu–Ni/TiO 2: influence of Cu:Ni mass composition, preparation, and calcination temperature. Ind Eng Chem Res. 2013;52(12):4491–4503.
  • Soto-Arreola A, Huerta-Flores AM, Mora-Hernández JM, et al. Comparative study of the photocatalytic activity for hydrogen evolution of MFe2O4 (M = Cu, Ni) prepared by three different methods. J Photochem Photobiol A Chem. 2018;357:20–29.
  • Ibrahim S, Majeed I, Qian Y, et al. Novel hetero-bimetallic coordination polymer as a single source of highly dispersed Cu/Ni nanoparticles for efficient photocatalytic water splitting. Inorg Chem Front. 2018;5:1816–1827.
  • Saravanan R, Manoj. D, Jiaqian Q, et al. Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production. Process Saf Environ Prot. 2018;120:339–347.
  • Roselin LS, Alyoubi MM, Mousa SM, et al. Transformation of commercial TiO2 into anatase with improved activity of Fe, Cu and Cu-Feoxides loaded TiO2. J Nano Sci Nanotechnol. 2019;19:1098–1104.
  • Sayed ET, Shehata N, Abdelkareem MA, et al. . Recent progress in environmentally friendly bio-electrochemical devices for simultaneous water desalination and wastewater treatment. Sci Total Environ. 2020;748:141046.
  • Yuan Y, Zhang J, Xing L. Effective electrochemical decolorization of azo dye on titanium suboxide cathode in bioelectrochemical system. Int J Environ Sci Technol. 2019;16:8363–8374.
  • Yang HY, Liu J, Wang YX, et al. Bioelectrochemical decolorization of a reactive diazo dye: kinetics, optimization with a response surface methodology, and proposed degradation pathway. Bioelectrochemistry. 2019;128:9–16.
  • Lellis B, Fávaro-Polonio CZ, Pamphile JA, et al. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol Res Innov. 2019;3(2):275–290.
  • Varjani S, Rakholiya P, Ng HY, et al. Microbial degradation of dyes: an overview. Bioresour Technol. 2020;314:123728.
  • Kumar A, Kumar A, Singh R, et al. Genetically engineered bacteria for the degradation of dye and other organic compounds. In: Singh P, Kumar A, Borthakur A, editors. Abatement of environmental pollutants, trends and strategies. 2020. p. 331–350. DOI:10.1016/B978-0-12-818095-2.00016-3.
  • Jing J, Kulshreshtha S, Kakade A, et al. Bioaugmentation of membrane bioreactor with Aeromonas hydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater. Int Biodeter Biodeg. 2020;150:104939.
  • Herrera-García S, Aguirre-Ramírez M, Torres-Pérez J. Comparison between Allura Red dye discoloration by activated carbon and azo bacteria strain. Environ Sci Pollut Res. 2020;27:29688–29696.
  • Guo J, Zhou J, Wang D, et al. A novel moderately halophilic bacterium for decolorizing azo dye under high salt condition. Biodegradation. 2007;19:15–19.
  • Akansha K, Chakraborty D, Sachan SG. Decolorization and degradation of methyl orange by Bacillus stratosphericus SCA1007. Biocatal Agric Biotechnol. 2019;18:101044.
  • Jain A, Yadav S, Nigam VK, et al. Fungal-mediated solid waste management: a review. In: Prasad R, editor. Mycoremediation and environmental sustainability in fungal biology. Springer; 2017. p. 153–170. DOI:10.1007/978-3-319-68957-9_9.
  • Shedbalkar U, Dhanve R, Jadhav J. Biodegradation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. J Hazard Mater. 2008;157(2–3):472–479.
  • Barapatre A, Aadil KR, Jha H. Biodegradation of malachite green by the ligninolytic fungus Aspergillus flavus. CLEAN - Soil, Air, Water. 2017;45(4):1600045.
  • Acuner E, Dilek F. Treatment of tectilon yellow 2G by Chlorella vulgaris. Process Biochem. 2004;39(5):623–631.
  • Lebron YAR, Moreira VR, Santos LVS, et al. Remediation of methylene blue from aqueous solution by Chlorella pyrenoidosa and Spirulina maxima biosorption: equilibrium, kinetics, thermodynamics and optimization studies. J Environ Chem Eng. 2018;6(5):6680–6690.
  • Yu Z, Wen X. Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater. Int Biodeterior Biodegradation. 2005;56(2):109–114.
  • Yang Q. Decolorization of synthetic dyes and production of manganese-dependent peroxidase by new fungal isolates. Biotechnol Lett. 2003;25(9):709–713.
  • Vitor V, Corso CR. Decolorization of textile dye by Candida albicans isolated from industrial effluents. J Ind Microbiol Biot. 2008;35(11):1353–1357.
  • Ramalho PA, Cardoso MH, Cavaco-Paulo A, et al. Characterization of azo reduction activity in a novel ascomycete yeast strain. Appl Environ Microbiol. 2004;70(4):2279–2288.
  • Wang H, Luo H, Fallgren PH, et al. Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnol Adv. 2015;33(3–4):317–334.
  • Lin J, Ye W, Huang J, et al. Toward resource recovery from textile wastewater: dye extraction, water and base/acid regeneration using a hybrid NF-BMED process. ACS Sustain Chem Eng. 2015;3(9):1993–2001.
  • Do MH, Ngo HH, Guo WS, et al. Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Sci Total Environ. 2018;639:910–920.
  • Lin J, Lin F, Chen X, et al. Sustainable management of textile wastewater: A hybrid tight ultrafiltration/bipolar-membrane electrodialysis process for resource recovery and zero liquid discharge. Ind Eng Chem Res. 2019;58(25):11003–11012.
  • Yousef S, Tatariants M, Tichonovas M, et al. A new strategy for using textile waste as a sustainable source of recovered cotton. Resour Conserv Recycl. 2019;145:359–369.
  • Ding J, Pan Y, Li L, et al. Synergetic adsorption and electrochemical classified recycling of Cr(VI) and dyes in synthetic dyeing wastewater. Chem Eng J. 2019;384:123232.
  • Li J, Liu R, Zhao S, et al. Simultaneous desalination and nutrient recovery during municipal wastewater treatment using microbial electrolysis desalination cell. J Clean Prod. 2020;261:121248.
  • Logrono W, Pérez M, Urquizo G, et al. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: A preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere. 2017;176:378–388.
  • Brar A, Kumar M, Vivekanand V, et al. Phycoremediation of textile effluent-contaminated water bodies employing microalgae: nutrient sequestration and biomass production studies. Int J Environ Sci Technol. 2018;16:7757–7768.
  • Saxena G, Kishor R, Bharagava RN. Application of microbial enzymes in degradation and detoxification of organic and inorganic pollutants. In: Bioremediation of industrial waste for environmental safety. 2019. p. 41–51. Singapore;.Springer. DOI:10.1007/978-981-13-1891-7_3.
  • Ngang HP, Ooi BS, Ahmad AL, et al. Preparation of PVDF–TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem Eng J. 2012;197:359–367.
  • Yu M, Wang J, Tang L, et al. Intimate coupling of photocatalysis and biodegradation for wastewater treatment: mechanisms, recent advances and environmental applications. Water Res. 2020;175:115673.
  • Mishra, varjani, kumar, Awasthi, Awasthi, sindhu, binod, rene, zhang. Microbial approaches for remediation of pollutants: innovations, future outlook, and challenges. Energy Environ. 2020;1–30. DOI:10.1177/0958305X19896781.
  • Mishra S, Nayak JK, Maiti A. Bacteria-mediated bio-degradation of reactive azo dyes coupled with bio-energy generation from model wastewater. Clean Technol Environ Policy. 2020;22:651–667.
  • Rahmani AR, Navidjouy N, Rahimnejad M, et al. Application of the eco-friendly bio-anode for ammonium removal and power generation from wastewater in bio-electrochemical systems. J Clean Prod. 2020;243:118589.
  • Eslami H, Shariatifar A, Rafiee E, et al. Decolorization and biodegradation of reactive Red 198 Azo dye by a new Enterococcus faecalis - Klebsiella variicola bacterial consortium isolated from textile wastewater sludge. World J Microbiol Biotechnol. 2019;35:38.
  • Ayed L, Bekir K, Achour S, et al. Exploring bioaugmentation strategies for azo dye CI Reactive Violet 5 decolourization using bacterial mixture: dye response surface methodology. Water Environ J. 2016;31(1):80–89.
  • Guadie A, Tizazu S, Melese M, et al. Biodecolorization of textile azo dye using Bacillus sp. strain CH12 isolated from alkaline lake. Biotechnol Rep. 2017;15:92–100.
  • Talha MA, Goswami M, Giri BS, et al. Bioremediation of Congo red dye in immobilized batch and continuous packed bed bioreactor by Brevibacillus parabrevis using coconut shell bio-char. Bioresour Technol. 2018;252:37–43.
  • Mehta R, Singhal P, Singh H, et al. Insight into thermophiles and their wide-spectrum applications. 3 Biotech. 2016;6(1):81.
  • Li H, Zhang R, Tang L, et al. Evaluation of Bacillus sp. MZS10 for decolorizing Azure B dye and its decolorization mechanism. J Environ Sci. 2014;26(5):1125–1134.
  • Maiti S, Sinha SS, Singh M. Microbial decolorization and detoxification of emerging environmental pollutant: cosmetic hair dyes. J Hazard Mater. 2017;338:356–363.
  • Chanwala J, Kaushik G, Dar MA, et al. Process optimization and enhanced decolorization of textile effluent by Planococcus sp. isolated from textile sludge. Environ Technol Innov. 2018;13:122–129.
  • Siddique R, Alif FA. Isolation and identification of orange M2R and green GS dye decolourizing Bacteria from textile sludge (soil) samples and determination of their optimum decolourization conditions. Ann Res Rev Biol. 2018;22:1–12.
  • Anjaneya O, Souche SY, Santoshkumar M, et al. Decolorization of sulfonated azo dye Metanil Yellow by newly isolated bacterial strains: bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. J Hazard Mater. 2011;190(1–3):351–358.
  • Carolin CF, Kumar PS, Joshiba GJ. Sustainable approach to decolourize methyl orange dye from aqueous solution using novel bacterial strain and its metabolites characterization. Clean Technol Environ. 2020;1–9. DOI:10.1007/s10098-020-01934-8.
  • Amin S, Rastogi RP, Chaubey MG, et al. Degradation and toxicity analysis of a reactive textile diazo dye-direct Red 81 by newly isolated Bacillus sp. DMS2. Front Microbiol. 2020;11:576680.
  • Mani A, Hameed SAS. Improved bacterial-fungal consortium as an alternative approach for enhanced decolourisation and degradation of azo dyes: a review. Net Environ Pollut Technol. 2019;18:49–64.
  • Manai I, Miladi B, El Mselmi A, et al. Industrial textile effluent decolourization in stirred and static batch cultures of a new fungal strain Chaetomium globosum IMA1 KJ472923. J Environ Manag. 2016;170:8–14.
  • Sinha A, Osborne WJ. Biodegradation of reactive green dye (RGD) by indigenous fungal strain VITAF-1. Int Biodeter Biodegr. 2016;114:176–183.
  • Munck C, Thierry E, Gräßle S, et al. Biofilm formation of filamentous fungi Coriolopsis sp. on simple muslin cloth to enhance removal of triphenylmethane dyes. J Environ Manag. 2018;214:261–266.
  • Krishnamoorthy R, Jose PA, Ranjith M, et al. Decolourisation and degradation of azo dyes by mixed fungal culture consisted of Dichotomomyces cejpii MRCH 1-2 and Phoma tropica MRCH 1-3. J Environ Chem Eng. 2018;6:588–595.
  • Shanmugam S, Ulaganathan P, Sivasubramanian S, et al. Trichoderma asperellum laccase mediated crystal violet degradation - Optimization of experimental conditions and characterization. J Environ Chem Eng. 2017;5:222–231.
  • Khan R, Fulekar MH. Mineralization of a sulfonated textile dye Reactive Red 31 from simulated wastewater using pellets of Aspergillus bombycids. Bioresour. Bioprocess. 2017;4:23.
  • Sayahi E, Ladhari N, Mechichi T, et al. Azo dyes decolourization by the laccase from Trametes trogii. J Text I. 2016;107(11):1478–1482.
  • Bankole PO, Adekunle AA, Obidi OF, et al. Biodegradation and detoxification of Scarlet RR dye by a newly isolated filamentous fungus, Peyronellaea prosopidis. Sustain Enviro Res. 2018;28(5):214–222.
  • Barathikannan K, Ramasamy KP, Manohar CS, et al. Diversity and decolorization potential of fungi isolated from the coral reef regions off Kavaratti. India Indian J Geo-Mar Sci. 2017;46(3):497–503.
  • Tochhawng L, Mishra VK, Passari AK, et al. Endophytic fungi: role in dye decolorization. In: Singh B, editor. Advances in endophytic fungal research. In fungal biology. Cham: Springer; 2019. p. 1–15. DOI:10.1007/978-3-030-03589-1_1.
  • Rodríguez-Couto S. Fungal laccase: a versatile enzyme for biotechnological applications. In: Yadav A, Mishra S, Singh S, et al, editors. Recent advancement in white biotechnology through fungi. Fungal biology. Cham: Springer; 2019. p. 429–457. DOI:10.1007/978-3-030-10480-1_13.
  • Rekik H, Jaouadi NZ, Bouacem K, et al. Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int J Biol Macromol. 2018;125:514–525.
  • Patel VR, Bhatt NS, Bhatt H. Involvement of ligninolytic enzymes of Myceliophthora vellerea HQ871747 in decolorization and complete mineralization of Reactive Blue 220. Chem Eng J. 2013;233:98–108.
  • Ortiz-Monsalve S, Valente P, Poll E, et al. Biodecolourization and biodetoxification of dye-containing wastewaters from leather dyeing by the native fungal strain Trametes villosa SCS-10. Biochem Eng J. 2018;141:19–28.
  • Vantamuri AB, Kaliwal BB. Purification and characterization of laccase from Marasmius species BBKAV79 and effective decolorization of selected textile dyes. 3 Biotech. 2016;6:189.
  • Singh G, Dwivedi SK. Decolorization and degradation of Direct Blue-1 (Azo dye) by newly isolated fungus Aspergillus terreus GS28, from sludge of carpet industry. Environ Technol Innov. 2020;18:100751.
  • Riegas-Villalobos A, Martínez-Morales F, Tinoco-Valencia R, et al. Efficient removal of azo-dye Orange II by fungal biomass absorption and laccase enzymatic treatment. 3 Biotech. 2020;10:146.
  • Sinha S, Singh R, Chaurasia AK, et al. Self-sustainable Chlorella pyrenoidosa strain NCIM 2738 based photobioreactor for removal of Direct Red-31 dye along with other industrial pollutants to improve the water-quality. J Hazard Mater. 2016;306:386–394.
  • López-Miranda JL, Silva R, Molina GA, et al. Evaluation of a dynamic bioremediation system for the removal of metal ions and toxic dyes using Sargassum Sp. J Mar Sci Eng. 2020;8(11):899.
  • Al-Fawwaz AT, Abdullah M. Decolorization of methylene blue and malachite green by immobilized Desmodesmus sp. isolated from North Jordan. Int J Environ Sci Dev. 2016;7(2):95–99.
  • Sinha S, Nigam S, Singh R. Potential of Nostoc muscorum for the decolorisation of textiles dye RGB-red. Int J Pharm Bio Sci. 2015;6:1092–1100.
  • Samir Ali S, Al-Tohamy R, Xie R, et al. Construction of a new lipase and xylanase producing oleaginous yeast consortium capable of reactive azo dye degradation and detoxification. Bioresour Technol. 2020;313:123631.
  • Al-Tohamy R, Sun J, Fareed MF, et al. Ecofriendly biodegradation of Reactive Black 5 by newly isolated Sterigmatomyces halophilus SSA1575, valued for textile azo dye wastewater processing and detoxification. Sci Rep. 2020;10:12370.