2,189
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Increasing chitosanase production in Bacillus cereus by a novel mutagenesis and screen method

, ORCID Icon, &
Pages 266-277 | Received 16 Nov 2020, Accepted 22 Dec 2020, Published online: 08 Jan 2021

References

  • Garcia-Valdez O, Champagne P, Cunningham MF. Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Prog Polym Sci. 2018;76:151–173.
  • Hamed I, Özogul F, Regenstein JM. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food SciTechnol. 2016;48:40–50.
  • Se Kwon Kim. Seafood Processing By-Products. 2014. 361-405.
  • Nguyen AD, Huang CC, Liang TW, et al. Production and purification of a fungal chitosanase and chitooligomers from Penicillium janthinellum D4 and discovery of the enzyme activators. Carbohydr Polym. 2014;108:331–337.
  • Xia W, Liu P, Zhang J, et al. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 2011;25:170–179.
  • Chiang CL, Chang CT, Sung HY. Purification and properties of chitosanase from a mutant of Bacillus subtilis IMR-NK1. Enzyme Microb Technol. 2003;32:260–267.
  • Cheng CY. An Aspergillus chitosanase with potential for large-scale preparation of chitosan oligosaccharides. Biotechnol Appl Biochem. 2000;32:197–203.
  • Li M, Han J, Xue Y, et al. Hydrogen peroxide pretreatment efficiently assisting enzymatic hydrolysis of chitosan at high concentration for chitooligosaccharides. Polym Degrad Stab. 2019;164:177–186.
  • ThActathil N, Velappan SP. Recent developments in chitosanase research and its biotechnological applications: a review. Food Chem. 2014;150:392–399.
  • Kiyohiko S, Yasue N, Mitsutomi. M. Characterization of a novel exo-chitosanase, an exo-chitobiohydrolase, from Gongronella butleri. J Biosci Bioeng. 2018.
  • Pechsrichuang P, Lorentzen S, Aam B, et al. Bioconversion of chitosan into chito-oligosaccharides (CHOS) using family 46 chitosanase from Bacillus subtilis (BsCsn46A). Carbohydr Polym. 2018;186:420–428.
  • Wang SL, Yu HT, Tsai MH, et al. Conversion of squid pens to chitosanases and dye adsorbents via Bacillus cereus. Res Chem Intermed. 2018;44(8):4903–4911.
  • Yong-Su S, Dong-Jun S, Woo-Jin J. Characterization and antifungal activity of chitosanase produced by Pedobacter sp. PR-M6. Microb Pathog. 2019;129:277–283.
  • Liang TW, Chen YY, Pan PS, et al. Purification of chitinase/chitosanase from Bacillus cereus and discovery of an enzyme inhibitor. Int J Biol Macromol. 2014;63:8–14.
  • Araújo NKD, Pagnoncelli MGB, Pimentel VC, et al. Single-step purification of chitosanases from Bacillus cereus using expanded bed chromatography. Int J Biol Macromol. 2016;82:291–298.
  • Su P-C, Hsueh W-C, Chang W-S, et al. Enhancement of chitosanase secretion by Bacillus subtilis for production of chitosan oligosaccharides. J Taiwan Inst Chem Eng. 2017;S1876107017300731.
  • Wang SL, Chen TR, Liang TW, et al. Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials. Biochem Eng J. 2009;48:111–117.
  • Silva LCA, Honorato TL, Franco TT, et al. Optimization of Chitosanase Production by Trichoderma koningii sp. Under Solid-State Fermentation. Food Bioprocess Technol. 2012;5:1564–1572.
  • Sinha S, Chand S, Tripathi P. Microbial degradation of chitin waste for production of chitosanase and food related bioactive compounds. Appl Biochem Microbiol. 2014;50:125–133.
  • Ottenheim C, Nawrath M, Wu JC. Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development. Bioresources Bioprocess. 2018;5. DOI:10.1186/s40643-018-0200-1
  • Li HP, Sun WT, Wang HB, et al. Electrical Features of Radio-frequency, Atmospheric- pressure, Bare-metallic-electrode Glow Discharges. Plasma Chem Plasma Process. 2007;27:529–545.
  • Zhang X, Zhang XF, Li HP, et al. Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Appl Microbiol Biotechnol. 2014;98:5387–5396.
  • Su C, Zhou W, Fan Y, et al. Mutation breeding of chitosanase-producing strainBacillussp. S65 by low-energy ion implantation. J Ind Microbiol Biotechnol. 2006;33:1037–1042.
  • Zhang X, Zhang C, Zhou -Q-Q. Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Appl Microbiol Biotechnol. 2015;99:5639–5646.
  • Laroussi M. Nonthermal decontamination of biological media by atmospheric-pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci. 2002;30:9–1415.
  • Laroussi M. Low Temperature Plasma-Based Sterilization: overview and State-of-the-Art. Plasma Process Polym. 2005;2:391–400.
  • Yuan L, Wang L, Ma K, et al. Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochem Eng J. 2011;55:17–22.
  • Zhang C, Qin J, Dai Y, et al. Atmospheric and room temperature plasma (ARTP) mutagenesis enables xylitol over-production with yeast Candida tropicalis. J Biotechnol. 2019;296:7–13.
  • Duan G, Wu B, Qin H, et al. Replacing water and nutrients for ethanol production by ARTP derived biogas slurry tolerant Zymomonas mobilis strain. Biotechnol Biofuels. 2019;12. DOI:10.1186/s13068-019-1463-2
  • Dong Y-B, Liu Y, Lin H, et al. Improving vanadium extraction from stone coal via combination of blank roasting and bioleaching by ARTP-mutated Bacillus mucilaginosus. Trans Nonferrous Met Soc China. 2019;29:849–858.
  • Ma Y, Shen W, Chen X, et al. Significantly enhancing recombinant alkaline amylase production in bacillus subtilis by integration of a novel mutagenesis-screening strategy with systems-level fermentation optimization. J Biol Eng. 2016;10:13.
  • Gao XA, Ju WT, Jung WJ, et al. Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydr Polym. 2008;72:513–520.
  • Chen XE, Xia W, Yu X. Purification and characterization of two types of chitosanase from Aspergillus sp. CJ22-326. Food Res Int. 2005;38:0–322.
  • Sun Y, Han B, Liu W, et al. Substrate induction and statistical optimization for the production of chitosanase from Microbacterium sp. OU01. Bioresour Technol. 2007;98:1548–1553.
  • Hui Z, Sang Q, Zhang W. Statistical optimization of chitosanase production byAspergillussp. QD-2 in submerged fermentation. Ann Microbiol. 2012;62:193–201.
  • Phornsiri P, Kirana Y, Montarop Y. Production of recombinant Bacillus subtilis chitosanase, suitable for biosynthesis of chitosan-oligosaccharide. Bioresour Technol. 2013;127:407–414.
  • Qin Z, Chen Q, Lin S, et al. Expression and characterization of a novel cold-adapted chitosanase suitable for chitooligosaccharides controllable preparation. Food Chem. 2018;253:139–147.
  • Wu WJ, Ahn BY. Statistical optimization of medium components by response surface methodology to enhance menaquinone-7(vitamin K2) production by Bacillus subtilis. J Microbiol Biotechnol. 2018;28(6):902–908.
  • Janion C. Inducible SOS Response System of DNA Repair and Mutagenesis in Escherichia coli. Int J Biol Sci. 2008;4:338–344.