2,455
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Effect of fed-batch and chemostat cultivation processes of C. glutamicum CP for L-leucine production

, , , , ORCID Icon &
Pages 426-439 | Received 18 Nov 2020, Accepted 26 Dec 2020, Published online: 20 Jan 2021

References

  • Yamamoto K, Tsuchisaka A, Yukawa H. Branched-chain amino acids. Adv Biochem Eng/Biotechnol. 2016;159:103–128.
  • Wang CX, Guo FF. Branched chain amino acids and metabolic regulation. Chin Sci Bull. 2013;58:1228–1235.
  • Wang -Y-Y, Xu J-Z, Zhang W-G. Metabolic engineering of L-leucine production in Escherichia coli and Corynebacterium glutamicum: a review. Crit Rev Biotechnol. 2019;39:633–647.
  • Columbus DA, Fiorotto ML, Davis TA. Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids. 2015;47:259–270.
  • Layman DK. The role of leucine in weight loss diets and glucose homeostasis. J Nutr. 2003;133:261S–7S.
  • D’Este M, Alvarado-Morales M, Angelidaki I. Amino acids production focusing on fermentation technologies – a review. Biotechnol Adv. 2018;36:14–25.
  • Becker J, Wittmann C. Systems and synthetic metabolic engineering for amino acid production – the heartbeat of industrial strain development. Curr Opin Biotechnol. 2012;23:718–726.
  • Simorgh A, Razminia A, Machado JAT. Optimal control of nonlinear fed-batch process using direct transcription method. Comput Chem Eng. 2019;130:11.
  • Reitz C, Fan Q, Neubauer P. Synthesis of non-canonical branched-chain amino acids in Escherichia coli and approaches to avoid their incorporation into recombinant proteins. Curr Opin Biotechnol. 2018;53:248–253.
  • Beckmann B, Hohmann D, Eickmeyer M, et al. An improved high cell density cultivation-iHCDC-strategy for leucine auxotrophic Escherichia coli K12 ER2507. Eng Life Sci. 2017;17:857–864.
  • Rossi F, Manenti F, Pirola C, et al. A robust sustainable optimization & control strategy (RSOCS) for (fed-)batch processes towards the low-cost reduction of utilities consumption. J Cleaner Prod. 2016;111:181–192.
  • Hsu SB, Hubbell S, Waltman P. Mathematical-theory for single-nutrient competition in continuous cultures of microorgansisms. SIAM J Appl Math. 1977;32:366–383.
  • Mozzetti V, Grattepanche F, Moine D, et al. Transcriptome analysis and physiology of Bifidobacterium longum NCC2705 cells under continuous culture conditions. Benef Microbes. 2012;3:261–272.
  • Wang G, Zhao J, Wang X, et al. Quantitative metabolomics and metabolic flux analysis reveal impact of altered trehalose metabolism on metabolic phenotypes of Penicillium chrysogenum in aerobic glucose-limited chemostats. Biochem Eng J. 2019;146:41–51.
  • Rajaraman E, Agarwal A, Crigler J, et al. Transcriptional analysis and adaptive evolution of Escherichia coli strains growing on acetate. Appl Microbiol Biotechnol. 2016;100:7777–7785.
  • Jeong H, Lee SJ, Kim P. Procedure for adaptive laboratory evolution of microorganisms using a chemostat. Jove-J Vis Exp. 2016;115:54446.
  • Robert JD, Garcia-Ortega X, Montesinos-Segui JL, et al. Continuous operation, a realistic alternative to fed-batch fermentation for the production of recombinant lipase B from Candida antarctica under the constitutive promoter PGK in Pichia pastoris. Biochem Eng J. 2019;147:39–47.
  • Peebo K, Neubauer P. Application of continuous culture methods to recombinant protein production in microorganisms. Microorganisms. 2018;6(3):12.
  • Hansen SR, Hubbell SP. Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes. Science. 1980;207:1491–1493.
  • Omta AW, Talmy D, Inomura K, et al. Quantifying nutrient throughput and DOM production by algae in continuous culture. J Theor Biol. 2020;494:12.
  • Gui Y, Ma Y, Xu Q, et al. Complete genome sequence of Corynebacterium glutamicum CP, a Chinese L-leucine producing strain. J Biotechnol. 2016;220:64–65.
  • Zhang K, Yu C, Yang ST. Effects of soybean meal hydrolysate as the nitrogen source on seed culture morphology and fumaric acid production by Rhizopus oryzae. Process Biochem. 2015;50:173–179.
  • Gail SK, Wolkowicz. The theory of the chemostat: dynamics of microbial competition. Bull Math Biol. 1996;58:595–598.
  • Cocaign-Bousquet M, Guyonvarch A, Lindley ND. Growth rate-dependent modulation of carbon flux through central metabolism and the kinetic consequences for glucose-limited chemostat cultures of Corynebacterium glutamicum. Appl Environ Microbiol. 1996;62:429–436.
  • Hou X, Chen X, Zhang Y, et al. L-Valine production with minimization of by-products’ synthesis in Corynebacterium glutamicum and Brevibacterium flavum. Amino Acids. 2012;43:2301–2311.
  • Ma Y, Chen Q, Cui Y, et al. Comparative genomic and genetic functional analysis of industrial L-leucine-and L-valine-producing Corynebacterium glutamicum strains. J Microbiol Biotechnol. 2018;28:1916–1927.
  • Vogt M, Haas S, Klaffl S, et al. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng. 2014;22:40–52.
  • Marienhagen J, Eggeling L. Metabolic function of Corynebacterium glutamicum aminotransferases AlaT and AvtA and impact on L-valine production. Appl Environ Microbiol. 2008;74:7457–7462.
  • Shimizu K, Matsuoka Y. Regulation of glycolytic flux and overflow metabolism depending on the source of energy generation for energy demand. Biotechnol Adv. 2019;37:284–305.
  • Bartek T, Makus P, Klein B, et al. Influence of L-isoleucine and pantothenate auxotrophy for L-valine formation in Corynebacterium glutamicum revisited by metabolome analyses. Bioprocess Biosyst Eng. 2008;31:217–225.
  • Akguen A, Mueller C, Engmann R, et al. Application of an improved continuous parallel shaken bioreactor system for three microbial model systems. Bioproc Biosystems Eng. 2008;31:193–205.
  • Kang NK, Kim EK, Sung M-G, et al. Increased biomass and lipid production by continuous cultivation of Nannochloropsis salina transformant overexpressing a bHLH transcription factor. Biotechnol Bioeng. 2019;116:555–568.
  • Gerritzen MJH, Stangowez L, van de Waterbeemd B, et al. Continuous production of Neisseria meningitidis outer membrane vesicles. Appl Microbiol Biotechnol. 2019;103:9401–9410.
  • Lee H-W, Lee H-S, Kim C-S, et al. Enhancement of L-threonine production by controlling sequential carbon-nitrogen ratios during fermentation. J Microbiol Biotechnol. 2018;28:293–297.
  • Zhang H, Chen C, Zhu C, et al. Production of bacterial cellulose by Acetobacter xylinum: effect of carbon/nitrogen-ratio on cell growth and metabolite production. Cellul Chem Technol. 2016;50:997–1003.
  • Ryu J, Cho JH, Kim SW. Achieving maximal production of fusaricidins from Paenibacillus kribbensis CU01 via continuous fermentation. Appl Biochem Biotechnol. 2020;190:712–720.
  • Gerstmeir R, Wendisch VF, Schnicke S, et al. Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol. 2003;104:99–122.
  • Li S, Zhou Y, Luo Z, et al. Dual function of ammonium acetate in acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Bioresour Technol. 2018;267:319–325.
  • Franco TMA, Blanchard JS. Bacterial branched-chain amino acid biosynthesis: structures, mechanisms, and drugability. Biochemistry. 2017;56:5849–5865.
  • Kennerknecht N, Sahm H, Yen MR, et al. Export of L-isoleucine from Corynebacterium glutamicum: a two-gene-encoded member of a new translocator family. J Bacteriol. 2002;184:3947–3956.
  • Lange C, Mustafi N, Frunzke J, et al. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. J Biotechnol. 2012;158:231–241.
  • Lipovsky J, Patakova P, Paulova L, et al. Butanol production by Clostridium pasteurianum NRRL B-598 in continuous culture compared to batch and fed-batch systems. Fuel Process Technol. 2016;144:139–144.
  • Dugar D, Stephanopoulos G. Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat Biotechnol. 2011;29:1074–1078.
  • Feng LY, Xu JZ, Zhang WG. Improved L-leucine production in Corynebacterium glutamicum by optimizing the aminotransferases. Molecules. 2018;23:13.
  • Wang -Y-Y, Shi K, Chen P, et al. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance l-leucine production. J Ind Microbiol Biotechnol. 2020;47:485–495.
  • Kopp J, Slouka C, Spadiut O, et al. The rocky road from fed-batch to continuous processing with E. coli. Front Bioeng Biotechol. 2019;7:19.
  • Wang -Y-Y, Zhang F, Xu J-Z, et al. Improvement of L-leucine production in Corynebacterium glutamicum by altering the redox flux. Int J Mol Sci. 2019;20:14.
  • Tsuchida T, Momose H. Improvement of an L-leucine-producing mutant of Brevibacterium lactofermentum 2256 by genetically desensitizing it to α-acetohydroxy acid synthetase. Appl Environ Microbiol. 1986;51:1024–1027.
  • Gusyatiner MM, Lunts MG, Kozlov YI, et al. DNA coding for mutant isopropylmalate synthase L-leucine-producing microorganism and method for producing L-leucine. EP. 2005.
  • Markovich GM, Grigorievna LM, Valerievna IL, et al. Method for producing L-leucine. US. 2000.
  • Katashkina JY, Lunts MG, Doroshenko VG et al. Method for producing an L-amino acid using a bacterium with an optimized level of gene expression. US. 2009.