7,051
Views
15
CrossRef citations to date
0
Altmetric
Review

Bioprospecting of gut microflora for plastic biodegradation

, , ORCID Icon, , , & show all
Pages 1040-1053 | Received 05 Jan 2021, Accepted 25 Feb 2021, Published online: 26 Mar 2021

References

  • Rodriguez F, Cohen C, Ober CK, et al. Principles of polymer systems. CRC Press; 2014.
  • Hedenqvist MS. Chapter 26 - barrier packaging materials. In: Kutz M, editor. Handbook of environmental degradation of materials. Third ed. US: William Andrew Publishing; 2018. p. 559–581.
  • Rosato D, Rosato D. 4 - PRODUCT DESIGN, in plastics engineered product design. In: Rosato D, Rosato D, editors. In  plastics engineered product design. New York: Elsevier Science; 2003. p. 198–343.
  • Shrivastava A. 1 - introduction to plastics engineering. In: Shrivastava A, editor. Introduction to plastics engineering. Cambridge, MA : William Andrew Publishing; 2018. p. 1–16.
  • Gulrez SK, Ali Mohsin ME, Shaikh H, et al. A review on electrically conductive polypropylene and polyethylene. Polym Composites. 2014;35(5):900–914.
  • Rustagi N, Pradhan SK, Singh R. Public health impact of plastics: an overview. Indian J Occup Environ Med. 2011;15(3):100–103.
  • Zimmermann L, Dierkes G, Ternes TA, et al. Benchmarking the in vitro toxicity and chemical composition of plastic consumer products. Environ Sci Technol. 2019;53(19):11467–11477.
  • Yang J, Song W, Wang X, et al. Migration of phthalates from plastic packages to convenience foods and its cumulative health risk assessments. Food Addit Contam. 2019;12(3):151–158.
  • Stern BR, Lagos G. Are there health risks from the migration of chemical substances from plastic pipes into drinking water? a review. Hum Ecol Risk Assess. 2008;14(4):753–779.
  • Katsikantami I, Sifakis S, Tzatzarakis MN, et al. A global assessment of phthalates burden and related links to health effects. Environ Int. 2016;97:212–236.
  • Sax L. Polyethylene terephthalate may yield endocrine disruptors. Environ Health Perspect. 2010;118(4):445–448.
  • Park E-J, Han J-S, Park E-J, et al. Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation. Toxicol Lett. 2020;324:75–85.
  • Çobanoğlu H, Belivermiş M, Sıkdokur E, et al. Genotoxic and cytotoxic effects of polyethylene microplastics on human peripheral blood lymphocytes. Chemosphere. 2021;272:129805.
  • Atis S, Tutluoglu B, Levent E, et al. The respiratory effects of occupational polypropylene flock exposure. Eur Respir J. 2005;25(1):110–117.
  • Hwang J, Choi D, Han S, et al. An assessment of the toxicity of polypropylene microplastics in human derived cells. SciTotal Environ. 2019;684:657–669.
  • Steenland K, Fletcher T, Savitz DA. Epidemiologic evidence on the health effects of Perfluorooctanoic Acid (PFOA). Environ Health Perspect. 2010;118(8):1100–1108.
  • Lobelle D, Cunliffe M. Early microbial biofilm formation on marine plastic debris. Mar Pollut Bull. 2011;62(1):197–200.
  • Barnes DKA, Milner P. Drifting plastic and its consequences for sessile organism dispersal in the Atlantic Ocean. Mar Biol. 2005;146(4):815–825.
  • Engler RE. The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol. 2012;46(22):12302–12315.
  • Jacquin J, Cheng J, Odobel C, et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the “Plastisphere”. Front Microbiol. 2019;10
  • Urbanek AK, Rymowicz W, Mirończuk AM. Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol. 2018;102(18):7669–7678.
  • Fazey FM, Ryan PG. Biofouling on buoyant marine plastics: an experimental study into the effect of size on surface longevity. Environ Pollut. 2016;210:354–360.
  • Derraik JGB. The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull. 2002;44(9):842–852.
  • Priddel D. Our seabirds at risk. In: Hutchings P, Lunney D, editors. Conserving marine environments: out of sight, out of mind. Royal Zoological Society of New South Wales; 2003. p. 72-80.
  • Franeker JV, Bell PJ. Plastic ingestion by petrels breeding in Antarctica. Mar Pollut Bull. 1988;19(12):672–674.
  • Bugoni L, Krause L, Petry MV. Marine debris and human impacts on sea turtles in southern Brazil. Mar Pollut Bull. 2001;42(12):1330–1334.
  • Goldberg E. Diamonds and plastics are forever? Mar Pollut Bull. 1994;28(8):466.
  • Waring RH, Harris RM, Mitchell SC. Plastic contamination of the food chain: a threat to human health? Maturitas. 2018;115:64–68.
  • Xanthos D, Walker TR. International policies to reduce plastic marine pollution from single-use plastics (plastic bags and microbeads): a review. Mar Pollut Bull. 2017;118(1–2):17–26.
  • Linda Mederake SGR, Knoblauch D. Regulation: solutions at the wrong end. In: Lili Fuhr MF, editor. Plastic Atlas. Germany: Heinrich-Böll-Stiftung in cooperation with Break Free From Plastic; 2019. p. 42-43.
  • Wen Z, Xie Y, Chen M, et al. China’s plastic import ban increases prospects of environmental impact mitigation of plastic waste trade flow worldwide. Nat Commun. 2021;12(1):1–9.
  • Tomar N, Srivastava R, Mittal V. Mining public opinion on plastic ban in India. In: Gao XH, Tiwari S, Trivedi MC, et al., editors. Advances in computational intelligence and communication technology. Switzerland AG: Springer; 2021. p. 109–121.
  • Da Costa JP. The 2019 global pandemic and plastic pollution prevention measures: playing catch-up. In: Hou D, editor. Science of the total environment. Elsevier. 2021. p. 145806.
  • Modak P. Circular economy practices in India. In: Ramakrishna LL, editor. An introduction to circular economy. Switzerland AG: Springer; 2021. p. 555–575.
  • Ministry of Housing and Urban Affairs, G.o.I. Plastic waste management issues. Solutions Case Stud. 2019.
  • Webb HK, Arnott J, Crawford R, et al. Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers. 2013;5(1):1–18.
  • Hopewell J, Dvorak R, Kosior E. Plastics recycling: challenges and opportunities. philosophical transactions of the royal society of London. series B. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364(1526):2115–2126.
  • Lemonick S. Chemistry may have solutions to our plastic trash problem. Chem Eng News. 2018;96(25):26–29.
  • Grigore ME. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling. 2017;2(4):24.
  • Yadav S, Mattaparthi S, Sreenivasulu K, et al. Recycling of thermoplastic polystyrene waste using citrus peel extract for oil spill remediation. J Appl Polym Sci. 2019;136(33):47886.
  • Mølgaard C. Environmental impacts by disposal of plastic from municipal solid waste. ResouConserv Recycl. 1995;15(1):51–63.
  • Verma R, Vinoda KS, Papireddy M, et al. Toxic pollutants from plastic waste- a review. Procedia Environ Sci. 2016;35:701–708.
  • Chapelle FH. Ground-water microbiology and geochemistry. John Wiley & Sons; 2000.
  • Devi RS, Kannan VR, Natarajan K, Nivas D, Kannan K, Chandru S, Antony AR, The role of microbes in plastic degradation. In Environ Waste Management , CRC Press, Boca Raton; 2016, 341-363
  • Sivan A. New perspectives in plastic biodegradation. Curr Opin Biotechnol. 2011;22(3):422–426.
  • Ahmed T,  Shahid M, Azeem F, et al. Biodegradation of plastics: current scenario and future prospects for environmental safety. In: Purchase D, editor. Environmental science and pollution research. 2018; Germany: Springer Nature. p. 1–12.
  • Bombelli P, Howe CJ, Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol. 2017;27(8):R292–R293.
  • Boughattas I, Hattab S, Alphonse V, et al. Use of earthworms Eisenia andrei on the bioremediation of contaminated area in north of Tunisia and microbial soil enzymes as bioindicator of change on heavy metals speciation. J Soils Sediments. 2019;19(1):296–309.
  • Loredo-Treviño A, García G, Velasco-Téllez A, et al. Polyurethane foam as substrate for fungal strains. Adv Biosci Biotechnol. 2011;2(2):52.
  • Nanda S, Sahu S, Abraham J. Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J Appl Sci Environ Manage. 2010;14(2). DOI:10.4314/jasem.v14i2.57839
  • Abdullahi M, Saidu B. Biodegradation of polythene and plastic using fadama soil amended with organic and inorganic fertilizer. Indian J Sci Res. 2013;4(1):17–24.
  • Russell JR, Huang J, Anand P, et al. Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol. 2011;77(17):6076–6084.
  • Das M, Kumar S. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech. 2015;86: V-5, I-1, PP: 81.
  • Pramila R, Ramesh KV. Biodegradation of low density polyethylene (LDPE) by fungi isolated from municipal landfill area. J Microbiol Biotechnol Res. 2011;1(131):e136.
  • Negi H, Gupta S, Zaidi MGH, et al. Studies on biodegradation of LDPE film in the presence of potential bacterial consortia enriched soil. Biologia. 2011;57(4):141-147.
  • Nanda S, Sahu SS. Biodegradability of polyethylene by Brevibacillus, Pseudomonas, and Rhodococcus spp. New York Sci J. 2010;3(7):95–98.
  • El-Shafei HA, Abd El-Nasser NH, Kansoh AL, et al. Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polym Degrad Stab. 1998;62(2):361–365.
  • Priyanka N, Archana T. Biodegradability of polythene and plastic by the help of microorganism: a way for brighter future. J Environ Anal Toxicol. 2011;1(4):1000111.
  • Sivan A, Szanto M, Pavlov V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol. 2006;72(2):346–352.
  • Volke‐Sepúlveda T, Saucedo‐Castañeda G, Gutiérrez‐Rojas M, et al. Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. J Appl Polym Sci. 2002;83(2):305–314
  • Konduri MK, Anupam KS,  Vivek JS, et al. Synergistic effect of chemical and photo treatment on the rate of biodegradation of high density polyethylene by indigenous fungal isolates. Int J Biotechnol Biochem. 2010;6(2):157–175.
  • Usha R, Sangeetha T, Palaniswamy M. Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agric Res Cent J Int. 2011;2(4):200–204.
  • Sharma A, Sharma A. Degradation assessment of low density polythene (LDP) and polythene (PP) by an indigenous isolate of Pseudomonas stutzeri. J Sci Ind Res. 2004;63:293–296.
  • Balasubramanian V, Natarajan K, Hemambika B, et al. High‐density polyethylene (HDPE)‐degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol. 2010;51(2):205–211.
  • Suresh B, Maruthamuthu S, Palanisamy N, et al. Investigation on biodegradability of polyethylene by Bacillus cereus strain Ma-Su isolated from compost soil. Int Res J Microbiol. 2011;2:292–302.
  • Chatterjee S, Roy B, Roy D, et al. Enzyme-mediated biodegradation of heat treated commercial polyethylene by Staphylococcal species. Polym Degrad Stab. 2010;95(2):195–200.
  • Pranamuda H, Tokiwa Y, Tanaka H. Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol. 1997;63(4):1637–1640.
  • Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev. 2013;37(5):699–735.
  • Bombelli P, Howe CJ, Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol. 2017;27(8):R292–R293.
  • Xia M, Hu L, Huo Y-X, et al. Myroides albus sp. nov., isolated from the gut of plastic-eating larvae of the coleopteran insect Zophobas atratus. Int J Syst Evol Microbiol. 2020;70(10):5460–5466.
  • Xu Z, Xia M, Huo Y-X, et al. Intestinirhabdus alba gen. nov., sp. nov., a novel genus of the family Enterobacteriaceae, isolated from the gut of plastic-eating larvae of the Coleoptera insect Zophobas atratus. Int J Syst Evol Microbiol. 2020;70(9):4951–4959.
  • Yang Y, Wang J, Xia M. Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. SciTotal Environ. 2020;708:135233.
  • Jang S, Kikuchi Y. Impact of the insect gut microbiota on ecology, evolution, and industry. Curr Opin Insect Sci. 2020;41:33–39.
  • Lee HM, Kim HR, Jeon E, et al. Evaluation of the biodegradation efficiency of four various types of plastics by Pseudomonas aeruginosa isolated from the gut extract of superworms. Microorganisms. 2020;8(9):1341.
  • Yang J, Wang J, Xia M, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol. 2014;48(23):13776–13784.
  • Yang -S-S, Brandon AM, Andrew Flanagan JC, et al. Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere. 2018;191:979–989.
  • Zielińska E, Zieliński D, Jakubczyk A, et al. The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters. Food Chem. 2020;345:128846.
  • Yang Y, Yang J, Wu W-M, et al. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. Role of gut microorganisms. Environ Sci Technol. 2015;49(20):12087–12093.
  • Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol. 2005;98(5):1093–1100.
  • Lwanga EH, Thapa B, Yang X, et al. Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: a potential for soil restoration. SciTotal Environ. 2018;624:753–757.
  • Suzuki K, Sakamoto H, Shinozaki Y, et al. Affinity purification and characterization of a biodegradable plastic-degrading enzyme from a yeast isolated from the larval midgut of a stag beetle, Aegus laevicollis. Appl Microbiol Biotechnol. 2013;97(17):7679–7688.
  • Tosin M, Weber M, Siotto M, et al. Laboratory test methods to determine the degradation of plastics in marine environmental conditions. Front Microbiol. 2012;3:225.
  • Morohoshi T, Ogata K,  Okura T, et al. Molecular characterization of the bacterial community in biofilms for degradation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) films in seawater. Microbes Environ. 2018;ME17052.
  • De Tender C, Schlundt C, Devriese LI, et al. A review of microscopy and comparative molecular-based methods to characterize “Plastisphere” communities. Anal Methods. 2017;9(14):2132–2143.
  • Qin L, Han J, Zhao B, et al. Thermal degradation of medical plastic waste by in-situ FTIR, TG-MS and TG-GC/MS coupled analyses. J Anal Appl Pyrolysis. 2018;136:132–145.
  • Sullivan C, Thomas P, Stuart B. An atomic force microscopy investigation of plastic wrapping materials of forensic relevance buried in soil environments. Aust J Forensic Sci. 2019;51(5):596–605.
  • Rosa D, Carvalho CL, Gaboardi F, et al. Evaluation of enzymatic degradation based on the quantification of glucose in thermoplastic starch and its characterization by mechanical and morphological properties and NMR measurements. Polym Test. 2008;27(7):827–834.
  • Das MP, Kumar S. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech. 2015;5(1):81–86.
  • Deepika S, Madhuri R. Biodegradation of low density polyethylene by micro-organisms from garbage soil. J Exp Biol Agric Sci. 2015;3(1):15–21.
  • Ibrahim IN, Maraqa A,  Hameed K M, et al. Assessment of potential plastic-degrading fungi in Jordanian habitats. Turk J Biol. 2011;35(5):551–557.
  • Orhan Y, Büyükgüngör H. Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int Biodeterior Biodegrad. 2000;45(1–2):49–55.
  • Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62(8):1596–1605.
  • Breslin VT. Degradation of starch-plastic composites in a municipal solid waste landfill. J Environ Polym Degrad. 1993;1(2):127–141.
  • Calmon A, Dusserre-Bresson L, Bellon-Maurel V, et al. An automated test for measuring polymer biodegradation. Chemosphere. 2000;41(5):645–651.
  • Klaeger F, Tagg AS, Otto S, et al. Residual monomer content affects the interpretation of plastic degradation. Sci Rep. 2019;9(1):1–6.
  • Bellia G, Tosin M, Floridi G, et al. Activated vermiculite, a solid bed for testing biodegradability under composting conditions. Polym Degrad Stab. 1999;66(1):65–79.
  • Abou-Zeid D-M, Müller R-J, Deckwer W-D. Degradation of natural and synthetic polyesters under anaerobic conditions. J Biotechnol. 2001;86(2):113–126.
  • Trishul A, Sudhakar M, Venkatesan R, et al. Biofouling and stability of synthetic polymers in sea water. Int Biodeterior Biodegrad. 2009;63(7):884–890.
  • Chamas A,  Moon H, Zheng J, et al. Degradation rates of plastics in the environment. ACS Sustainable Chem Eng. 2020;8(9):3494–3511.
  • Mohan K. Microbial deterioration and degradation of polymeric materials. J Biochem Technol. 2011;2(4):210–215.
  • Shah AA, Hasan F, Hameed A, et al. Isolation of Fusarium sp. AF4 from sewage sludge, with the ability to adhere the surface of polyethylene. Afr J Microbiol Res. 2009;3(10):658–663.
  • Krupp LR, Jewell WJ. Biodegradability of modified plastic films in controlled biological environments. Environ Sci Technol. 1992;26(1):193–198.
  • Billingham NC, Bonora M, de Corte D. Environmentally degradable plastics based on oxo-biodegradation of conventional polyolefins. In: Biodegradable polymers and plastics. 2003; Boston, MA: Springer. p. 313–325
  • Bonhomme S, Cuer A, Delort A-M, et al. Environmental biodegradation of polyethylene. Polym Degrad Stab. 2003;81(3):441–452.
  • Andrady  AL. Plastics and their impacts in the marine environment. in International Marine Debris Conference on Derelict Fishing Gear and the Ocean Environment. 2000.
  • Murata K, Sato K, Sakata Y. Effect of pressure on thermal degradation of polyethylene. J Anal Appl Pyrolysis. 2004;71(2):569–589.
  • Rummel CD, Jahnke A, Gorokhova E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ Sci Technol Lett. 2017;4(7):258–267.
  • Amobonye A, Bhagwat P, Singh S, et al. Plastic biodegradation: frontline microbes and their enzymes. SciTotal Environ. 2021;759:143536.
  • Bhardwaj H, Gupta R, Tiwari A. Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ. 2013;21(2):575–579.
  • Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science. 2016;351(6278):1196–1199.
  • Knott BC, Erickson E, Allen MD, et al. Characterization and engineering of a two-enzyme system for plastics depolymerization. Proc Nat Acad Sci. 2020;117(41):25476–25485.
  • Duan X, Liu Y, You X, et al. High-level expression and characterization of a novel cutinase from Malbranchea cinnamomea suitable for butyl butyrate production. Biotechnol Biofuels. 2017;10(1):223.
  • Xi X, Ni K, Hao H, et al. Secretory expression in Bacillus subtilis and biochemical characterization of a highly thermostable polyethylene terephthalate hydrolase from bacterium HR29. Enzyme Microb Technol. 2021;143:109715.