1,428
Views
7
CrossRef citations to date
0
Altmetric
Research Paper

Effect of low-level ultrasound treatment on the production of L-leucine by Corynebacterium glutamicum in fed-batch culture

, , , ORCID Icon &
Pages 1078-1090 | Received 22 Jan 2021, Accepted 09 Mar 2021, Published online: 29 Mar 2021

References

  • Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37:1–17.
  • Yao K, Duan YH, Li FN, et al. Leucine in Obesity: therapeutic Prospects. Trends Pharmacol Sci. 2016;37(8):714–727. .
  • Ikeda T, Morotomi N, Kamono A, et al. The Effects of Timing of a Leucine-Enriched Amino Acid Supplement on Body Composition and Physical Function in Stroke Patients: a Randomized Controlled Trial. Nutrients. 2020;12(7):9. .
  • Yamamoto K, Tsuchisaka A, Yukawa H. Branched-Chain Amino Acids. Adv. Biochem Eng Biotechnol. 2016;159:103–128.
  • Wendisch VF, Bott M, Eikmanns BJ. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Curr Opin Microbiol. 2006;9:268–274.
  • Zahoor A, Lindner SN, Wendisch VF. Metabolic engineering of Escherichia coli and Corynebacterium glutamicum for biotechnological production of organic acids and amino acids. Comput Struct Biotechnol J. 2012;3:1–11.
  • Park JH, Lee KH, Kim TY, et al. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A. 2007;104:7797–7802.
  • Cho JS, Choi KR, Prabowo CPS, et al. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab Eng. 2017;42:157–167.
  • Li Y, Wei H, Wang T, et al. Current status on metabolic engineering for the production of l-aspartate family amino acids and derivatives. Bioresour Technol. 2017;245:1588–1602.
  • Vogt M, Haas S, Klaffl S, et al. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction. Metab Eng. 2014;22:40–52.
  • Wang -Y-Y, Zhang F, Xu J-Z, et al. Improvement of l-Leucine Production in Corynebacterium glutamicum by Altering the Redox Flux. Int J Mol Sci. 2019;20:14.
  • Wang -Y-Y, Shi K, Chen P, et al. Rational modification of the carbon metabolism of Corynebacterium glutamicum to enhance l-leucine production. J Ind Microbiol Biotechnol. 2020;47:485–495.
  • Kentish S, Feng H. Applications of Power Ultrasound in Food Processing. In: Doyle MP, Klaenhammer TR, editors. Annual Review of Food Science and Technology. Vol. 5. Palo Alto: Annual Reviews; 2014. p. 263–284.
  • Chemat F, Zill EH, Khan MK. Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem. 2011;18:813–835.
  • Bevilacqua A, Campaniello D, Speranza B, et al. Two Nonthermal Technologies for Food Safety and Quality-Ultrasound and High Pressure Homogenization: effects on Microorganisms, Advances, and Possibilities: a Review. J Food Prot. 2019;82:2049–2064.
  • Huang GP, Chen SW, Dai CH, et al. Effects of ultrasound on microbial growth and enzyme activity. Ultrason Sonochem. 2017;37:144–149.
  • Dahroud BD, Mokarram RR, Khiabani MS, et al. Low intensity ultrasound increases the fermentation efficiency of Lactobacillus casei subsp.casei ATTC 39392. Int J Biol Macromol. 2016;86:462–467.
  • Bevilacqua A, Racioppo A, Sinigaglia M, et al. A low-power ultrasound attenuation improves the stability of biofilm and hydrophobicity of Propionibacterium freudenreichii subsp freudenreichii DSM 20271 and Acidipropionibacterium jensenii DSM 20535. Food Microbiol. 2019;78:104–109.
  • Erriu M, Blus C, Szmukler-Moncler S, et al. Microbial biofilm modulation by ultrasound: current concepts and controversies. Ultrason Sonochem. 2014;21:15–22.
  • Akdeniz V, Akalin AS. Recent advances in dual effect of power ultrasound to microorganisms in dairy industry: activation or inactivation. Crit Rev Food Sci Nutr. 2020;1–16. DOI:10.1080/10408398.2020.1830027
  • Ojha KS, Mason TJ, O’Donnell CP, et al. Ultrasound technology for food fermentation applications. Ultrason Sonochem. 2017;34:410–417.
  • Borah AJ, Roy K, Goyal A, et al. Mechanistic investigations in biobutanol synthesis via ultrasound-assisted ABE fermentation using mixed feedstock of invasive weeds. Bioresour Technol. 2019;272:389–397.
  • Yang Y, Xiang J, Zhang Z, et al. Stimulation of in situ low intensity ultrasound on batch fermentation of Saccharomyces cerevisiae to enhance the GSH yield. J Food Process Eng. 2020;43:e13489.
  • Ren HY, Xiao RN, Kong FY, et al. Enhanced biomass and lipid accumulation of mixotrophic microalgae by using low-strength ultrasonic stimulation. Bioresour Technol. 2019;272:606–610.
  • Ma Y, Chen Q, Cui Y, et al. Comparative Genomic and Genetic Functional Analysis of Industrial L-Leucine-and L-Valine-Producing Corynebacterium glutamicum Strains. J Microbiol Biotechnol. 2018;28:1916–1927.
  • Gui Y, Ma Y, Xu Q, et al. Complete genome sequence of Corynebacterium glutamicum CP, a Chinese L-leucine producing strain. J Biotechnol. 2016;220:64–65.
  • Huang GP, Chen SW, Tang YX, et al. Stimulation of low intensity ultrasound on fermentation of skim milk medium for yield of yoghurt peptides by Lactobacillus paracasei. Ultrason Sonochem. 2019;51:315–324.
  • John I, Pola J, Appusamy A. Optimization of Ultrasonic Assisted Saccharification of Sweet Lime Peel for Bioethanol Production Using Box-Behnken Method. Waste Biomass Valori. 2019;10:441–453.
  • He B, Zhang LL, Yue XY, et al. Optimization of Ultrasound-Assisted Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 2016;204:70–76.
  • Ruan S, Luo J, Li Y, et al. Ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis: effects on peptides content, ACE inhibitory activity and biomass. Process Biochem. 2020;91:73–82.
  • Choi KJ, Yu YG, Hahn HG, et al. Characterization of acetohydroxyacid synthase from Mycobacterium tuberculosis and the identification of its new inhibitor from the screening of a chemical library. FEBS Lett. 2005;579:4903–4910.
  • O’Donnell CP, Tiwari BK, Bourke P, et al. Effect of ultrasonic processing on food enzymes of industrial importance. Trends Food Sci Tech. 2010;21: 358–367.
  • Ashokkumar M, Bhaskaracharya R, Kentish S, et al. The ultrasonic processing of dairy products - An overview. Dairy Sci Technol. 2010;90: 147–168.
  • Joyce EM, King PM, Mason TJ. The effect of ultrasound on the growth and viability of microalgae cells. J Appl Phycol. 2014;26:1741–1748.
  • Li B, Tian F, Liu X, et al. Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Appl Microbiol Biotechnol. 2011;92:609–616.
  • Shokri S, Shekarforoush SS, Hosseinzadeh S. Efficacy of low intensity ultrasound on fermentative activity intensification and growth kinetic of Leuconostoc mesenteroides. Chem Eng Process. 2020;153:107955.
  • Wu J, Nyborg WL. Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev. 2008;60:1103–1116.
  • Franco TMA, Blanchard JS. Bacterial Branched-Chain Amino Acid Biosynthesis: structures, Mechanisms, and Drugability. Biochemistry. 2017;56(44):5849–5865.
  • Abesinghe AMNL, Islam N, Vidanarachchi JK, et al. Effects of ultrasound on the fermentation profile of fermented milk products incorporated with lactic acid bacteria. Int Dairy J. 2019;90:1–14.
  • Subhedar PB, Gogate PR. Enhancing the activity of cellulase enzyme using ultrasonic irradiations. J Mol Catalysis B Enzymatic. 2014;101: 108–114.
  • Liu WS, Yang CY, Fang TJ. Strategic ultrasound-induced stress response of lactic acid bacteria on enhancement of beta-glucosidase activity for bioconversion of isoflavones in soymilk. J Microbiol Methods. 2018;148:145–150.