5,677
Views
50
CrossRef citations to date
0
Altmetric
Research Paper

Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids

, ORCID Icon, , &
Pages 2480-2498 | Received 01 Mar 2021, Accepted 19 May 2021, Published online: 11 Jun 2021

References

  • Guevara-Martínez M. Strain- and bioprocess-design strategies to increase production of (r)-3-hydroxybutyrate by Escherichia coli. In: TRITA-CBH-FOU. Stockholm: KTH Royal Institute of Technology; 2019. p. 100.
  • Mohapatra S, Pattnaik S, Maity S, et al. Comparative analysis of phas production by Bacillus megaterium ouat 016 under submerged and solid-state fermentation. Saudi J Biol Sci. 2020;27(5):1242–1250.
  • Khajuria R. Polyhydroxyalkanoates: biosynthesis to commercial production- a review. J Microbiol Biotechnol Food Sci. 2017;6(p):1098–1106.
  • V R. Overview on polyhydroxyalkanoates: a promising biopol. J Microb Biochem Technol. 2011;03:99–105.
  • Blunt W, Levin D, Cicek N. Bioreactor operating strategies for improved polyhydroxyalkanoate (PHA) productivity. Polymers. 2018;10(p):1197.
  • Li Z, Yang J, Loh XJ. Polyhydroxyalkanoates: opening doors for a sustainable future. Npg Asia Mater. 2016;8(p):e265.
  • Mikkili I, Peele A, Dulla J, et al. Isolation, screening and extraction of polyhydroxybutyrate (PHB) producing bacteria from sewage sample. Int J Pharm Tech Res. 2014;6(p):974–4304.
  • Costa SS, Miranda AL, de Morais MG, et al. Microalgae as source of polyhydroxyalkanoates (phas) — a review. Int J Biol Macromol. 2019;131(p):536–547.
  • Favaro L, Basaglia M, Casella S. Improving polyhydroxyalkanoate production from inexpensive carbon sources by genetic approaches: a review. Biofuel Bioprod Biorefin. 2019;13(1):208–227.
  • Koller M, Atlić A, Dias M, et al. Microbial pha production from waste raw materials. In: Chen GG-Q, Ed. Plastics from bacteria: natural functions and applications. Springer Berlin Heidelberg: Berlin, Heidelberg; 2010. p. 85–119.
  • Pagliano G, Ventorino V, Panico A, et al. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: a review of microbial processes. Biotechnol Biofuels. 2017;10(1):113.
  • Zainal-Abideen M, Md Din MF, Ujang Z, et al., Polyhydroxyalkanoates (PHA) production from palm oil mill effluent (pome) using mixed culture in sequencing batch reactor (sbr). http://eprints.utm.my/3689/, 2015.
  • Munir S, Iqbal S, Jamil N. Polyhydroxyalkanoates (pha) production using paper mill wastewater as carbon source in comparison with glucose. J Pure Appl Microbiol. 2015;9:453–460.
  • Pakalapati H, Chang C-K, Show PL, et al. Development of polyhydroxyalkanoates production from waste feedstocks and applications. J Biosci Bioeng. 2018;126(3):282–292.
  • Lemechko P, Le Fellic M, Bruzaud S. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using agro-industrial effluents with tunable proportion of 3-hydroxyvalerate monomer units. Int J Biol Macromol. 2019;128:429–434.
  • Kettl K-H, Shahzad K, Eder M, et al. Ecological footprint comparison of biobased pha production from animal residues. Chem Eng Trans. 2012;29:439–444.
  • Shahzad K, Kettl K-H, Titz M, et al. Comparison of ecological footprint for biobased PHA production from animal residues utilizing different energy resources. Clean Technol Envir. 2013;15(3):525–536.
  • Chen H, Meng H, Nie Z, et al. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of ph and feeding regimes. Bioresour Technol. 2013;128(p):533–538.
  • Kleerebezem R, Joosse B, Rozendal R, et al. Anaerobic digestion without biogas? Rev Environ Sci Bio/Technol. 2015;14(4):787–801.
  • Aydin S, Yesil H, Tugtas AE. Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresour Technol. 2018;250:548–555.
  • Wainaina S, Parchami M, Mahboubi A, et al. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour Technol. 2019;274(p):329–334.
  • Szacherska K, Oleskowicz-Popiel P, Ciesielski S, et al. Volatile fatty acids as carbon sources for polyhydroxyalkanoates production. Polymers. 2021;13(3):321.
  • Valappil SP, Boccaccini AR, Bucke C, et al. Polyhydroxyalkanoates in gram-positive bacteria: insights from the genera bacillus and streptomyces. Antonie Van Leeuwenhoek. 2007;91(1):1–17.
  • Mohanrasu K, Rao RGR, Dinesh GH, et al. Optimization of media components and culture conditions for polyhydroxyalkanoates production by Bacillus megaterium. Fuel. 2020;271:117522.
  • Thammasittirong A, Saechow S, Thammasittirong SN. Efficient polyhydroxybutyrate production from Bacillus thuringiensis using sugarcane juice substrate. Turk J Biol. 2017;41(6):992–1002.
  • Naranje, NK, Bharat J, Wadher, HJ, et al. Bacillus megaterium as potential producer for PHAs. IOSR J Environ Sci Toxicol Food Tech. 2015;1: 7–10.
  • Yuksekdag Z, Aslim B, Beyatli Y, et al. Effect of carbon and nitrogen sources and incubation times on poly-beta-hydroxybutyrate (PHB) synthesis by Bacillus subtilis 25 and Bacillus megaterium 12. Afr J Biotechnol. 2004;3:1684–5315. Vol 1. .
  • Munir S, Jamil N. Polyhydroxyalkanoates (PHA) production in bacterial co-culture using glucose and volatile fatty acids as carbon source. J Basic Microbiol. 2018;58(3):247–254.
  • Hassan, MA, Bakhiet, EK, Ali, SG, et al. Production and characterization of polyhydroxybutyrate (PHB) produced by Bacillus sp. isolated from Egypt. J App Pharm Sci. 2016;6(4):46-51.
  • Okwuobi PN, Ogunjobi A. Production and analysis of polyhydroxyalkanoate (pha) by Bacillus megaterium using pure carbon substrates. World Appl Sci J. 2013;28:1336–1340.
  • Vishnuvardhan Reddy S, Thirumala M, Mahmood SK. Production of PHB and p(3HB-co-3HV) biopolymers by Bacillus megaterium strain OU303A isolated from municipal sewage sludge. World J Microbiol Biotechnol. 2009;25(3):391–397.
  • Shahid S, Mosrati R, Ledauphin J, et al. Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509. J Biosci Bioeng. 2013;116(3):302–308.
  • Sabra W, Abou-Zeid D. Improving feeding strategies for maximizing polyhdroxybutyrate yield by Bacillus megaterium. Res J Microbiol. 2008;3(p):308–318.
  • Ariunbaatar J, Esposito G, Yeh D, et al. Enhanced anaerobic digestion of food waste by supplementing trace elements: role of selenium (vi) and iron (ii). Front Environ Sci. 2016;4:4.
  • Hahn S, Chang Y, Kim BS, et al. Communication to the editor optimisation of microbial poly(3-hydroxybutyrate) recovery using dispersions of sodium hypochlorite solution and chloroform. Biotechnol Bioeng. 1994;44(2):256–261.
  • Weiland P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol. 2010;85(4):849–860.
  • Deublein D, Steinhauser A. Biogas from waste and renewable resources: An Introduction. 2011. Weinheim: John Wiley & Sons.
  • Laycock B, Halley P, Pratt S, et al. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci. 2013;38(3):536–583.
  • Ushani U, Sumayya AR, Archana G, et al. Chapter 10 - enzymes/biocatalysts and bioreactors for valorization of food wastes. In: Banu JR, Ed. in Food waste to valuable resources. Academic Press: London; 2020. p. 211–233.
  • Tan G-Y, Chen C-L, Li L, et al. Start a research on biopolymer polyhydroxyalkanoate (pha): a review. Polymers. 2014;6(p):706–754.
  • Mitra R, Xu T, Xiang H, et al. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb Cell Fact. 2020;19(1):86.
  • Verlinden RA, Hill DJ, Kenward MA, et al. Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol. 2007;102(6):1437–1449.
  • Zhang X, Lin Y, Wu Q, et al. Synthetic biology and genome-editing tools for improving pha metabolic engineering. Trends in Biotechnology; 2019;38(7): p. 689–700.
  • McAdam B, Brennan Fournet M, McDonald P, et al. Production of polyhydroxybutyrate (PHB) and factors impacting its chemical and mechanical characteristics. Polymers. 2020;12(12):2908.
  • Rehman A, Aslam A, Masood R, et al. Production and characterization of a thermostable bioplastic (poly-s-hydroxybutyrate) from Bacillus cereus nrrl-b-3711. Pakistan J Bot. 2016;48:349–356.
  • Cui Y-W, Zhang H-Y, Ji S-Y, et al. Kinetic analysis of the temperature effect on polyhydroxyalkanoate production by Haloferax mediterranei in synthetic molasses wastewater. J Polym Environ. 2017;25(2):277–285.
  • Javaid H, Nawaz A, Riaz N, et al. Biosynthesis of polyhydroxyalkanoates (PHAs) by the valorization of biomass and synthetic waste. Molecules. 2020;25(23):23.
  • Goswami G, Panda D, Samanta R, et al. Bacillus megaterium adapts to acid stress condition through a network of genes: insight from a genome-wide transcriptome analysis. Sci Rep. 2018;8(1):16105.
  • Bhagowati P, Pradhan S, Dash HR, et al. Production, optimization and characterization of polyhydroxybutyrate, a biodegradable plastic by Bacillus spp. Biosci Biotechnol Biochem. 2015;79(9):1454–1463.
  • Russell AD. Lethal effects of heat on bacterial physiology and structure. Sci Prog. 2003;86(Pt 1–2):115–137.
  • Yang A-S, Honig B. On the ph dependence of protein stability. J Mol Biol. 1993;231(2):459–474.
  • Moran S. Chapter 3 - biology. In: Moran S, editor. An applied guide to water and effluent treatment plant design. Butterworth-Heinemann: Amsterdam; 2018. p. 25–37.
  • Riedel TE, Berelson WM, Nealson KH, et al. Oxygen consumption rates of bacteria under nutrient-limited conditions. Appl Environ Microbiol. 2013;79(16):4921–4931.
  • Baez A, Shiloach J. Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microb Cell Fact. 2014;13(1):181.
  • Kumari A. Chapter 4 - beta oxidation of fatty acids. In: Kumari A, editor. Sweet biochemistry: Remembering Structures, Cycles, and Pathways by Mnemonics. Academic Press: London; 2018. p. 17–19.
  • Allen A, Ayorinde F, Eribo B. Biosynthesis pathways of PHA. In: Wu L-P, editor. Polyhydroxyalkanoates (PHAs): Biosynthesis, Industrial Production and Applications in Medicine. Nova Science Publishers: Hauppauge; 2014. p. 75–82.
  • Kourmentza C, Plácido J, Venetsaneas N, et al. Recent advances and challenges towards sustainable polyhydroxyalkanoate (PHA) production. Bioengineering (Basel). 2017;4(2):2.
  • Mohapatra S, Maity S, Dash HR, et al. Bacillus and biopolymer: prospects and challenges. Biochem Biophys Rep. 2017;12:206–213.
  • Muralidharan R, Radha K. A kinetic study of polyhydroxybutyrate production on nitrogen limited medium using Bacillus subtilis MTCC 9763 through a two stage cultivation strategy. J Environ Biol. 2015;36:537–542.
  • Alarfaj AA, Arshad M, Sholkamy EN, et al. Extraction and characterization of polyhydroxybutyrates (PHB) from Bacillus thuringiensis KSADL 127 isolated from mangrove environments of Saudi Arabia. Braz Arch Biol Technol. 2015;58(5):781–788.
  • Valappil SP, Rai R, Bucke C, et al. Polyhydroxyalkanoate biosynthesis in Bacillus cereus spv under varied limiting conditions and an insight into the biosynthetic genes involved. J Appl Microbiol. 2008;104(6):1624–1635.
  • Dhangdhariya JH, Dubey S, Trivedi HB, et al. Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI’s dry sea mix as a novel growth medium. Int J Biol Macromol. 2015;76(p):254–261.
  • Mohapatra S, Sarkar B, Samantaray DP, et al. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process. Environ Technol. 2017;38(24):3201–3208.
  • Saranya V, Shenbagarathai R. Production and characterization of PHA from recombinant E. coli harbouring phac1 gene of indigenous Pseudomonas sp. LDC-5 using molasses. Braz J Microbiol. 2011;42(3):1109–1118. . [publication of the Brazilian Society for Microbiology]
  • Karagöz İ. An effect of mold surface temperature on final product properties in the injection molding of high-density polyethylene materials. Polym Bull. 2021;78(5):2627–2644.
  • Kumar G, Ohkubo T, Hono K. Effect of melt temperature on the mechanical properties of bulk metallic glasses. J Mater Res. 2011;24(7):2353–2360.
  • Keller A. Morphology of polymers. In: Blahoslav S, editor. Recent developments in morphology of crystalline polymers. De Gruyter: Berlin; 2019. p. 3–26.
  • Kyriacos D. High-temperature engineering thermoplastics. 2017. p. 545–615. Oxford: Elsevier.
  • Feldmann M. The effects of the injection moulding temperature on the mechanical properties and morphology of polypropylene man-made cellulose fibre composites. Compos Part A Appl Sci Manuf. 2016;87:146–152.
  • Righetti MC. Crystallization of polymers investigated by temperature-modulated DSC. Materials (Basel). 2017;10(4):442.
  • Nair AM, Annamalai K, Kannan SK, et al. Characterization of polyhydroxyalkanoates produced by Bacillus subtilis isolated from soil samples. Malay J Biosci. 2014;1(1):8–12.
  • Mudliar S, Vaidya A, Kumar MS, et al. Techno-economic evaluation of PHB production from activated sludge. Clean Technol Envir. 2008;10(3):255–262.
  • Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, et al. Waste to bioplastics: how close are we to sustainable polyhydroxyalkanoates production? Waste Manage. 2021;119:374–388.
  • Gholami A, Mohkam M, Rasoul-Amini S, et al. Industrial production of polyhydroxyalkanoates by bacteria: opportunities and challenges. Minerva Biotecnologica. 2016;28:59–74.
  • Patel SKS, Singh M, Kalia VC. Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. From glucose in two stage system. Indian J Microbiol. 2011;51(4):418.
  • Abinaya VR, Velramar B, Nachimuthu R, et al. Exploration of polyhydroxyalkanoates production from rhizosphere soil bacteria. ENVIS Newslett. 2012;10(p):1–6.
  • Chen G-Q, König K-H, Lafferty RM. Occurrence of poly-d(−)-3-hydroxyalkanoates in the genus Bacillus. FEMS Microbiol Lett. 1991;84(2):173–176.
  • Chakraborty P, Gibbons W, Muthukumarappan K. Conversion of volatile fatty acids into polyhydroxyalkanoate by Ralstonia eutropha. J Appl Microbiol. 2009;106(6):1996–2005.
  • Kedia G, Passanha P, Dinsdale RM, et al. Evaluation of feeding regimes to enhance PHA production using acetic and butyric acids by a pure culture of Cupriavidus necator. Biotechnol Bioprocess Eng. 2014;19(6):989–995.