1,712
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Upregulation of microRNA miR-141-3p and its prospective targets in endometrial carcinoma: a comprehensive study

, , , , , , , , , , & show all
Pages 2941-2956 | Received 30 Mar 2021, Accepted 09 Jun 2021, Published online: 28 Jun 2021

References

  • Tabuchi Y, Hirohashi Y, Hashimoto S, et al. Clonal analysis revealed functional heterogeneity in cancer stem-like cell phenotypes in uterine endometrioid adenocarcinoma. Exp Mol Pathol. 2019;106:78–88. . PubMed PMID: 30503404.
  • Wang Y, Liu D, Jin X, et al. Genome-wide characterization of aberrant DNA methylation patterns and the potential clinical implications in patients with endometrial cancer. Pathol Res Pract. 2019;215(1):137–143. . PubMed PMID: 30449607.
  • Wang F, Wang B, Long J, et al. Identification of candidate target genes for endometrial cancer, such as ANO1, using weighted gene co-expression network analysis. Exp Ther Med. 2019;17(1):298–306. . PubMed PMID: 30651795.
  • Silverberg SG, Gilks CB. The most important discoveries of the past 50 years in gynaecological pathology. Histopathology. 2020;76(1):6–10. . PubMed PMID: 31846536.
  • Siegel RL, Miller KD, Jemal A, et al. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30. doi: 10.3322/caac.21590. Epub 2020/01/09. PubMed PMID: 31912902.
  • Amant F, Mirza MR, Koskas M, et al. Cancer of the corpus uteri. Int J Gynaecol Obstet. 2018;143(Suppl 2):37–50. . PubMed PMID: 30306580.
  • Gao L, Xie Z-C, Pang J-S, et al. A novel alternative splicing-based prediction model for uteri corpus endometrial carcinoma. Aging (Albany NY). 2019;11(1):263–283. . PubMed PMID: 30640723.
  • Lu H, Ju -D-D, Yang G-D, et al. Targeting cancer stem cell signature gene SMOC-2 overcomes chemoresistance and inhibits cell proliferation of endometrial carcinoma. EBioMedicine. 2019;40:276–289. . PubMed PMID: 30594556.
  • Wang Y, Xu M, Yang Q. A six-microRNA signature predicts survival of patients with uterine corpus endometrial carcinoma. Curr Probl Cancer. 2019;43(2):167–176. . PubMed PMID: 29567372.
  • Yang S, Wang H, Li D, et al. Role of endometrial autophagy in physiological and pathophysiological processes. J Cancer. 2019;10(15):3459–3471. . PubMed PMID: 31293650.
  • Brooks RA, Fleming GF, Lastra RR, et al. Current recommendations and recent progress in endometrial cancer. CA Cancer J Clin. 2019;69(4):258–279. . PubMed PMID: 31074865.
  • Nie D, Yang E, Li Z, et al. Pretreatment thrombocytosis predict poor prognosis in patients with endometrial carcinoma: a systematic review and meta-analysis. BMC Cancer. 2019;19(1):73. . PubMed PMID: 30646853.
  • Williams AT, Ganesan R. Role of the pathologist in assessing response to treatment of ovarian and endometrial cancers. Histopathology. 2020;76(1). DOI:10.1111/his.13994. PubMed PMID: 31846531.
  • Moran Y, Agron M, Praher D, et al. The evolutionary origin of plant and animal microRNAs. Nat Ecol Evol. 2017;1(3):27. . PubMed PMID: 28529980.
  • Du J, Zhang F, Zhang L, et al. MicroRNA-103 regulates the progression in endometrial carcinoma through ZO-1. Int J Immunopathol Pharmacol. 2019;33:2058738419872621. . PubMed PMID: 31456452.
  • Bao W, Zhang Y, Li S, et al. miR‑107‑5p promotes tumor proliferation and invasion by targeting estrogen receptor‑α in endometrial carcinoma. Oncol Rep. 2019;41(3):1575–1585. . PubMed PMID: 30569100.
  • Zheng X, Xu K, Zhu L, et al. MiR-486-5p act as a biomarker in endometrial carcinoma: promotes cell proliferation, migration, invasion by targeting MARK1. Onco Targets Ther. 2020;13:4843–4853. . PubMed PMID: 32547110.
  • Wu Z, Tang H, Xiong Q, et al. Prognostic role of microRNA-205 in human gynecological cancer: a meta-analysis of fourteen studies. DNA Cell Biol. 2020;39(5):875–889. . PubMed PMID: 32354230.
  • Wang C, Li Q, He Y, et al. MicroRNA‑21‑5p promotes epithelial to mesenchymal transition by targeting SRY‑box 17 in endometrial cancer. Oncol Rep. 2020;43(6):1897–1905. . PubMed PMID: 32236579.
  • Zhou Z, Xu Y-P, Wang L-J, et al. miR-940 potentially promotes proliferation and metastasis of endometrial carcinoma through regulation of MRVI1. Biosci Rep. 2019;39(6). DOI:10.1042/BSR20190077. PubMed PMID: 31085718.
  • Gao Y, Feng B, Han S, et al. The roles of MicroRNA-141 in human cancers:</L> from diagnosis to treatment. Cell Physiol Biochem. 2016;38(2):427–448. . PubMed PMID: 26828359.
  • Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 2008;5(3):115–119. . PubMed PMID: 19182522.
  • Jayaraman M, Radhakrishnan R, Mathews CA, et al. Identification of novel diagnostic and prognostic miRNA signatures in endometrial cancer. Genes Cancer. 2017;8(5–6):566–576. . PubMed PMID: 28740575.
  • Cui Z, An X, Li J, et al. LncRNA MIR22HG negatively regulates miR-141-3p to enhance DAPK1 expression and inhibits endometrial carcinoma cells proliferation. Biomed Pharmacother. 2018;104:223–228. . PubMed PMID: 29775889.
  • Snowdon J, Zhang X, Childs T, et al. The MicroRNA-200 family is upregulated in endometrial carcinoma. PLoS ONE. 2011;6(8):e22828.
  • Huang H-Q, Chen G, Xiong -D-D, et al. Down-regulation of microRNA-125b-2-3p is a risk factor for a poor prognosis in hepatocellular carcinoma. Bioengineered. 2021;12(1):1627–1641. . PubMed PMID: 33949293.
  • Chen S-W, Lu H-P, Chen G, et al. Downregulation of miRNA-126-3p is associated with progression of and poor prognosis for lung squamous cell carcinoma. FEBS Open Bio. 2020;10(8):1624–1641. . PubMed PMID: 32598517.
  • Wang -S-S, Huang Z-G, Wu H-Y, et al. Downregulation of miR-193a-3p is involved in the pathogenesis of hepatocellular carcinoma by targeting CCND1. PeerJ. 2020;8:e8409. . PubMed PMID: 32095323.
  • Liang C-Y, Li Z-Y, Gan T-Q, et al. Downregulation of hsa-microRNA-204-5p and identification of its potential regulatory network in non-small cell lung cancer: RT-qPCR, bioinformatic- and meta-analyses. Respir Res. 2020;21(1):60. . PubMed PMID: 32102656.
  • Chen Y-J, Guo Y-N, Shi K, et al. Down-regulation of microRNA-144-3p and its clinical value in non-small cell lung cancer: a comprehensive analysis based on microarray, miRNA-sequencing, and quantitative real-time PCR data. Respir Res. 2019;20(1):48. . PubMed PMID: 30832674.
  • Gao L, Yan S-B, Yang J, et al. MiR-182-5p and its target HOXA9 in non-small cell lung cancer: a clinical and in-silico exploration with the combination of RT-qPCR, miRNA-seq and miRNA-chip. BMC Med Genomics. 2020;13(1):3. . PubMed PMID: 31906958.
  • Huang DW, Sherman BT, Lempicki RA, et al. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1). DOI:10.1093/nar/gkn923. PubMed PMID: 19033363.
  • Huang DW, Sherman BT, Lempicki RA, et al. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. . PubMed PMID: 19131956.
  • Vejnar CE, Blum M, Zdobnov EM, et al. miRmap web: comprehensive microRNA target prediction online. Nucleic Acids Res. 2013;41(W1):W165–W8. . PubMed PMID: 23716633.
  • Vejnar CE, Zdobnov EM. MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 2012;40(22):11673–11683. . PubMed PMID: 23034802.
  • Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome. Science. 2017;357(6352):eaan2507. . PubMed PMID: 28818916.
  • Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. . PubMed PMID: 25613900.
  • Thul PJ, Åkesson L, Wiking M, et al. A subcellular map of the human proteome. Science. 2017;356(6340). DOI:10.1126/science.aal3321. PubMed PMID: 28495876.
  • Liu C-Z, Ye Z-H, Ma J, et al. A qRT-PCR and gene functional enrichment study focused on downregulation of miR-141-3p in hepatocellular carcinoma and its clinicopathological significance. Technol Cancer Res Treat. 2017;16(6):835–849. . PubMed PMID: 28436261.
  • Hou X, Yang L, Jiang X, et al. Role of microRNA-141-3p in the progression and metastasis of hepatocellular carcinoma cell. Int J Biol Macromol. 2019;128:331–339. . PubMed PMID: 30695725.
  • Sun J, Zhang Y. LncRNA XIST enhanced TGF-β2 expression by targeting miR-141-3p to promote pancreatic cancer cells invasion. Biosci Rep. 2019;39(7). DOI:10.1042/BSR20190332. PubMed PMID: 31213574.
  • Zhou R, Mo W, Wang S, et al. miR-141-3p and TRAF5 network contributes to the progression of T-Cell acute lymphoblastic leukemia. Cell Transplant. 2019;28(1_suppl):59S–65S.
  • Liu X, Wang M, Cui Y. LncRNA TP73-AS1 interacted with miR-141-3p to promote the proliferation of non-small cell lung cancer. Arch Med Sci. 2019;15(6):1547–1554. . PubMed PMID: 31749884.
  • Li W, Cui Y, Wang D, et al. MiR-141-3p functions as a tumor suppressor through directly targeting ZFR in non-small cell lung cancer. Biochem Biophys Res Commun. 2019;509(3):647–656. . PubMed PMID: 30611568.
  • Liep J, Kilic E, Meyer HA, et al. Cooperative effect of miR-141-3p and miR-145-5p in the regulation of targets in clear cell renal cell carcinoma. PloS One. 2016;11(6):e0157801. . PubMed PMID: 27336447.
  • Zhang Y, Li J, Jia S, et al. Down-regulation of lncRNA-ATB inhibits epithelial-mesenchymal transition of breast cancer cells by increasing miR-141-3p expression. Biochem Cell Biol. 2019;97(2):193–200. . PubMed PMID: 30352165.
  • Li J-Z, Li J, Wang H-Q, et al. MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression. Biochem Biophys Res Commun. 2017;482(4):1381–1386. . PubMed PMID: 27956179.
  • Sun S, Ma J, Xie P, et al. Hypoxia-responsive miR-141-3p is involved in the progression of breast cancer via mediating the HMGB1/HIF-1α signaling pathway. J Gene Med. 2020;(10):e3230. doi:10.1002/jgm.3230. PubMed PMID: 32436353.
  • Yang X, Wang P. MiR-188-5p and MiR-141-3p influence prognosis of bladder cancer and promote bladder cancer synergistically. Pathol Res Pract. 2019;215(11):152598. . PubMed PMID: 31562019.
  • Li J-H, Zhang Z, Du M-Z, et al. microRNA-141-3p fosters the growth, invasion, and tumorigenesis of cervical cancer cells by targeting FOXA2. Arch Biochem Biophys. 2018;657:23–30. . PubMed PMID: 30222949.
  • Guan R, Xu X, Chen M, et al. Advances in the studies of roles of rho/rho-kinase in diseases and the development of its inhibitors. Eur J Med Chem. 2013;70:613–622. . PubMed PMID: 24211637.
  • Scotto-Lavino E, Garcia-Diaz M, Du G, et al. Basis for the isoform-specific interaction of myosin phosphatase subunits protein phosphatase 1c beta and myosin phosphatase targeting subunit 1. J Biol Chem. 2010;285(9):6419–6424. . PubMed PMID: 20042605.
  • Grassie ME, Moffat LD, Walsh MP, et al. The myosin phosphatase targeting protein (MYPT) family: a regulated mechanism for achieving substrate specificity of the catalytic subunit of protein phosphatase type 1δ. Arch Biochem Biophys. 2011;510(2):147–159. . PubMed PMID: 21291858.
  • Takahashi N, Ito M, Tanaka J, et al. Localization of the gene coding for myosin phosphatase, target subunit 1 (MYPT1) to human chromosome 12q15-q21. Genomics. 1997;44(1):150–152. . PubMed PMID: 9286714.
  • Khasnis M, Nakatomi A, Gumpper K, et al. Reconstituted human myosin light chain phosphatase reveals distinct roles of two inhibitory phosphorylation sites of the regulatory subunit, MYPT1. Biochemistry. 2014;53(16):2701–2709. . PubMed PMID: 24712327.
  • Munoz-Galvan S, Felipe-Abrio B, Verdugo-Sivianes EM, et al. Downregulation of MYPT1 increases tumor resistance in ovarian cancer by targeting the hippo pathway and increasing the stemness. Mol Cancer. 2020;19(1):7. . Epub 2020/01/14. PubMed PMID: 31926547; PubMed Central PMCID: PMCPMC6954568.
  • Zhang C, Li A, Li H, et al. PPP1R12A copy number is associated with clinical outcomes of stage III CRC receiving oxaliplatin-based chemotherapy. Mediators Inflamm. 2015;2015:417184. . PubMed PMID: 26113782.
  • Chirino YI, García-Cuellar CM, García-García C, et al. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells. Toxicol Lett. 2017;272:29–37. . PubMed PMID: 28279687.
  • Lin Z-Y, Chen G, Zhang Y-Q, et al. MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer. Mol Cancer. 2017;16(1):48. . PubMed PMID: 28241827.
  • Fujioka M, Takahashi N, Odai H, et al. A new isoform of human myosin phosphatase targeting/regulatory subunit (MYPT2): cDNA cloning, tissue expression, and chromosomal mapping. Genomics. 1998;49(1):59–68. . PubMed PMID: 9570949.
  • Ito M, Nakano T, Erdodi F, et al. Myosin phosphatase: structure, regulation and function. Mol Cell Biochem. 2004;259(1/2):197–209. . PubMed PMID: 15124925.