8,071
Views
42
CrossRef citations to date
0
Altmetric
Review

Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives

, , ORCID Icon, , , , , , , & show all
Pages 4697-4718 | Received 19 Mar 2021, Accepted 16 Jun 2021, Published online: 01 Aug 2021

References

  • Envi Stats India report, 2018. Envi Stats India 2018 (Supplement on Environmental Accounts). Gov. India, Minist. Stat. Program. Implement. 1–249 (http://mospi.nic.in/sites/default/files/reports_and_publication/statistical_publication/EnviStats/EnviStats_India_27sep18.pdf) ( Last accessed on 16 March 2021)
  • wwdr report, 2017. The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. Paris, UNESCO, The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. Paris, UNESCO.
  • Saravanan A, Kumar PS, Varjani S, et al. Effective removal of Cr(VI) ions from synthetic solution using Mixed Biomasses: kinetic, Equilibrium and Thermodynamic study. Journal of Water Process Engineering. 2021;40:101905.
  • Varjani SJ, Sudha MC, 2018. Treatment technologies for emerging organic contaminants removal from wastewater, in: water Remediation. Springer, pp. 91–115.
  • Organization for Economic Co-operation and Development,2012. OECD Environmental Outlook to 2050: the Consequences of Inaction. Paris, OECDPublishing (www.oecdilibrary.org/docserver/9789264122246en.pdf?expires=1576513787&id=id&accname=ocid177643&checksum=E5D1E6D4DB78962941DAA08F2B58D805. ( Last accessed on 16 March 2021)
  • Khanal SK, Varjani S, C. SKL, et al. Waste-to-resources: opportunities and challenges. Bioresour Technol. 2020;317:123987.
  • WWDR Report, 2020. WWDR - 2020, Journal of Chemical Information and Modeling.
  • Shah AV, Srivastava VK, Mohanty SS, et al. Municipal solid waste as a sustainable resource for energy production: state-of-the-art review. J Environ Chem Eng. 2021;9(4):105717.
  • Varjani SJ, Gnansounou E, Pandey A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere. 2017;188:280–291.
  • Report CETP, 2016. Global good practices in industrial wastewater treatment and disposal/reuse, with special reference to common effluent treatment plants 60, 1–66.
  • Liu Y, Deng YY, Zhang Q, et al. Overview of recent developments of resource recovery from wastewater via electrochemistry-based technologies. Sci Total Environ. 2021;757:143901.
  • Perera MK, Englehardt JD, Dvorak AC. Technologies for Recovering Nutrients from Wastewater: a Critical Review. Environ Eng Sci. 2019;36(5):511–529.
  • Chang Y, Deng L, Meng X, et al. Closed-Loop Electrochemical Recycling of Spent Copper(II) from Etchant Wastewater Using a Carbon Nanotube Modified Graphite Felt Anode. Environ Sci Technol. 2018;52(10):5940–5948.
  • Jin W, Hu M, Hu J. Selective and efficient electrochemical recovery of dilute copper and tellurium from acidic chloride solutions. ACS Sustain Chem Eng. 2018;6(10):178–184.
  • Niu J, Yan W, Du J, et al. An electrically switched ion exchange film with molecular coupling synergistically-driven ability for recovery of Ag+ ions from wastewater. Chem Eng J. 2020;389:124498.
  • Diaz-Elsayed N, Rezaei N, Ndiaye A, et al. Trends in the environmental and economic sustainability of wastewater-based resource recovery: a review. J Clean Prod. 2020;265:121598.
  • Holmgren KE, Li H, Verstreete W, et al., 2016. State of the Art Compendium Report on Resource Recovery from Water Preface. IWA Resour. Recover. Clust. Int. Water Assoc. (IWA), London, UK 49.
  • Lei Y, Geraets E, Saakes M, et al. Electrochemical removal of phosphate in the presence of calcium at low current density: precipitation or adsorption?. Water Res. 2020;169:115207.
  • Liao M, Liu Y, Tian E, et al. Phosphorous removal and high-purity struvite recovery from hydrolyzed urine with spontaneous electricity production in Mg-air fuel cell. Chem Eng J. 2020;391:123517.
  • Ye Y, Ngo HH, Guo W, et al. Bio-membrane based integrated systems for nitrogen recovery in wastewater treatment: current applications and future perspectives. Chemosphere. 2021;265:129076.
  • Chaplin BP. The Prospect of Electrochemical Technologies Advancing Worldwide Water Treatment. Acc Chem Res. 2019;52(3):596–604.
  • Feng Y, Yang L, Liu J, et al. Electrochemical technologies for wastewater treatment and resource reclamation. 2016;2:800–831. Environ Sci Water Res Technol.
  • An C, Huang G, Yao Y, et al. Emerging usage of electrocoagulation technology for oil removal from wastewater: a review. Sci Total Environ. 2017;579:537–556.
  • Garcia-Segura S, Lanzarini-Lopes M, Hristovski K, et al. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl Catal B Environ. 2018;236:546–568.
  • Martínez-Huitle CA, Panizza M. Electrochemical oxidation of organic pollutants for wastewater treatment. Curr Opin Electrochem. 2018;11:62–71.
  • Cheng D, Ngo HH, Guo W, et al. Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics. Bioresour Technol. 2020;311:123588.
  • Selvaraj H, Chandrasekaran K, Murugan R, et al. An integrated biological and electrochemical process for recovery of sulfur from an industrial effluent contaminated pond water and its preliminary application in high performance battery. Sep Purif Technol. 2017;180:133–141.
  • Ding J, Pan Y, Li L, et al. Synergetic adsorption and electrochemical classified recycling of Cr(VI) and dyes in synthetic dyeing wastewater. Chem Eng J. 2020;384:123232.
  • Chen C-Y, Kuo E-W, Nagarajan D, et al. Semi-batch cultivation of Chlorella sorokiniana AK-1 with dual carriers for the effective treatment of full strength piggery wastewater treatment. Bioresour Technol. 2021;326:124773.
  • Machineni L. Review on biological wastewater treatment and resources recovery: attached and suspended growth systems. Water Sci Technol. 2019;80(11):2013–2026.
  • Varjani S, Pandey A, Upasani VN. Petroleum sludge polluted soil remediation: integrated approach involving novel bacterial consortium and nutrient application. Sci Total Environ. 2021a;763:142934.
  • Shindhal T, Rakholiya P, Varjani S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 2021;12(1):70–87.
  • Chowdhary P, Raj A, Bharagava RN. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: a review. Chemosphere. 2018;194:229–246.
  • Kumar NM, Sudha MC, Damodharam T, et al., 2020. Micro-pollutants in surface water: impacts on the aquatic environment and treatment technologies, in: current Developments in Biotechnology and Bioengineering. Elsevier, pp. 41–62.
  • Rene ER, Ge J, Kumar G, et al., 2020. Resource recovery from wastewater, solid waste, and waste gas: engineering and management aspects.
  • Shah AV, Varjani S, Srivastava VK, et al. Zero Liquid Discharge (ZLD) as Sustainable Technology—Challenges and Perspectives. Indian J Exp Biol. 2020;58:508–514.
  • Sharma S, Basu S. Fabrication of centimeter-sized Sb2S3/SiO2 monolithic mimosa pudica nanoflowers for remediation of hazardous pollutants from industrial wastewater. J Clean Prod. 2021;280:124525.
  • Varjani S, Rakholiya P, Ng HY, et al. Microbial degradation of dyes: an overview. Bioresour Technol. 2020b;314:123728.
  • Varjani S, Upasani VN, Pandey A. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Sci Total Environ. 2020c;737:139766.
  • Hu E, Shang S, Chiu AKL. Removal of Reactive Dyes in Textile Effluents by Catalytic Ozonation Pursuing on-Site Effluent Recycling. Molecules. 2019;24. DOI:10.3390/molecules24152755.
  • Sorlini S, Rondi L, Gomez AP, et al. Appropriate technologies for drinking water treatment in Mediterranean countries. Environ Eng Manag J. 2015;14(7):1721–1733.
  • Schellenberg T, Subramanian V, Ganeshan G, et al. Wastewater Discharge Standards in the Evolving Context of Urban Sustainability–The Case of India. Front Environ Sci. 2020;8. DOI:10.3389/fenvs.2020.00030.
  • WEPA report, 2018. Water Environmental Partnership in Asia (WEPA).
  • Granger M, Marnane I, Alvarez D, 2019. Industrial waste water treatment pressures on environment.
  • Nguyen TKL, Ngo HH, Guo W, et al. Environmental impacts and greenhouse gas emissions assessment for energy recovery and material recycle of the wastewater treatment plant. SciTotal Environ. 2021;784:147135.
  • Varjani S, Rakholiya P, Shindhal T, et al. Trends in dye industry effluent treatment and recovery of value added products. J Water Process Eng. 2021b;39:101734.
  • Pourrezaei, P., Afzal, A., Ding, N., Islam, S., Moustafa, A., Chelme-ayala, P., El-din, M.G., 2010. Physico-Chemical Processes. 10.2175/106143010X12756668800852
  • Zhang Y, Li D, Chen Y, et al. Catalytic wet air oxidation of dye pollutants by polyoxomolybdate nanotubes under room condition. Appl Catal B Environ. 2009;86(3–4):182–189.
  • Zhang R, Khorshed C, Vigneswaran S, et al. Submerged microfiltration coupled with physcio-chemical processes as pretreatment to sea water desalination. Desalin Water Treat. 2009;11(1–3):52–57.
  • Ahmed B, Mohamed H, Limem E, et al. Degradation and Mineralization of Organic Pollutants Contained in Actual Pulp and Paper Mill Wastewaters by a UV/H2O2 Process. Ind Eng Chem Res. 2009;48(7):3370–3379.
  • Reali MAP, Marchetto M. High-rate dissolved air flotation for water treatment. Water Sci Technol. 2001;43(8):43–49.
  • Rodrigues RT, Rubio J. New basis for measuring the size distribution of bubbles. Miner Eng. 2003;16(8):757–765.
  • Rubio J, Carissimi E, Rosa JJ. 193 Brazil. Int J Environ Pollut. 2007;30:193–208.
  • Amenorfenyo DK, Huang X, Zhang Y, et al. Microalgae brewery wastewater treatment: potentials, benefits and the challenges. Int J Environ Res Public Health. 2019;16(11):1910.
  • Crini G, Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett. 2019;17(1):145–155.
  • Da Rosa JJ, Rubio J. The FF (flocculation-flotation) process. Miner Eng. 2005;18(7):701–707.
  • Rubio J, Souza ML, Smith RW. OMWW_flotation_centerfugal.pdf. Miner Eng. 2002;15(3):139–155.
  • Lakatos G. Biological wastewater treatment. Wastewater Water Contam. Sources, Assess. Remediat. 2018;105–128. DOI:10.1201/b18368-4
  • Pandey AK, Gaur VK, Udayan A, et al. Biocatalytic remediation of industrial pollutants for environmental sustainability: research needs and opportunities. Chemosphere. 2021;272: 129936. https://doi.org/10.1016/j.chemosphere.2021.129936
  • Mishra B, Varjani S, Agrawal DC, et al. Engineering biocatalytic material for the remediation of pollutants: a comprehensive review. Environ. Technol. Innov. 2020; 20:101063. https://doi.org/10.1016/j.eti.2020.101063
  • Aljuboury DADA, Palaniandy P, Abdul Aziz HB, et al. Treatment of petroleum wastewater by conventional and new technologies - A review. Glob Nest J. 2017;19:439–452.
  • Ferreira JA, Varjani S, Taherzadeh MJ. A critical review on the ubiquitous role of filamentous fungi in pollution mitigation. Curr. Pollut. Reports. 2020; 6:1–15.
  • Ab Halim MH, Nor Anuar A, Abdul Jamal NS, et al. Influence of high temperature on the performance of aerobic granular sludge in biological treatment of wastewater. J Environ Manage. 2016;184:271–280.
  • Ding P, Chu L, Wang J. Biological treatment of actual petrochemical wastewater using anaerobic/anoxic/oxic process and the microbial diversity analysis. Appl Microbiol Biotechnol. 2016;100(23):10193–10202.
  • Wang K, Li W, Gong X, et al. Biological pretreatment of tannery wastewater using a full-scale hydrolysis acidification system. Int Biodeterior Biodegrad. 2014;95:41–45.
  • Ghodeif K, 2013. Baseline Assessment Study for Wastewater Treatment Plant for Al Gozayyera village, West Kantara City, Ismailia Governorate, Egypt. Epa 832-F-00-014 1–7. doi: 10.13140/RG.2.2.34897.63844
  • Lippi M, Gaudie Ley MBR, Mendez GP, et al. State of Art of Landfill Leachate Treatment: literature Review and Critical Evaluation. 2018;40:78. Ciência E Nat.
  • Yu X, Yu ZY, Zhang XL, et al. “superaerophobic” Nickel Phosphide Nanoarray Catalyst for Efficient Hydrogen Evolution at Ultrahigh Current Densities. J. Am. Chem Soc. 2019;141(18):7537–7543.
  • Kong Z, Li L, Xue Y, et al. Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: a review. J Clean Prod. 2019;231:913–927.
  • Yorkor B, Momoh Y, 2019. A Review of Anoxic Wastewater Treatment : an Overlooked Aspect in A Review of Anoxic Wastewater Treatment : an Overlooked Aspect in Wastewater Treatment in Nigeria. 10.12691/ajwr-7-4-2
  • Mishra B, Varjani S, Pradhan I, et al. Insights into interdisciplinary approaches for bioremediation of organic pollutants: innovations, challenges and perspectives. 2020b; 1–8. Proc Natl Acad Sci India Sect B Biol Sci.
  • Oliveira EMS, Silva FR, Morais CCO, et al. Performance of (in) active anodic materials for the electrooxidation of phenolic wastewaters from cashew-nut processing industry. Chemosphere. 2018;201:740–748.
  • Ntagia E, Fiset E, Da Silva Lima L, et al. Anode materials for sulfide oxidation in alkaline wastewater: an activity and stability performance comparison. Water Res. 2019;149:111–119.
  • Selvaraj H, Chandrasekaran K, Gopalkrishnan R. Recovery of solid sulfur from hydrogen sulfide gas by an electrochemical membrane cell. RSC Adv. 2016;6(5):3735–3741.
  • Guan W, Tian S, Cao D, et al. Electrooxidation of nickel-ammonia complexes and simultaneous electrodeposition recovery of nickel from practical nickel-electroplating rinse wastewater. Electrochim Acta. 2017;246:1230–1236.
  • Martin ET, McGuire CM, Mubarak MS, et al. Electroreductive Remediation of Halogenated Environmental Pollutants. Chem Rev. 2016;116(24):15198–15234.
  • Xu D, Li Y, Yin L, et al. Electrochemical removal of nitrate in industrial wastewater. Front Environ Sci Eng. 2018;12:1–14.
  • Guo S, Heck K, Kasiraju S, et al. Insights into Nitrate Reduction over Indium-Decorated Palladium Nanoparticle Catalysts. ACS Catal. 2018;8(1):503–515.
  • Rodríguez Arredondo M, Kuntke P, ter Heijne A, et al. Load ratio determines the ammonia recovery and energy input of an electrochemical system. Water Res. 2017;111:330–337.
  • García-Carrillo C, Parga-Torres J, Moreno-Casillas H, et al. Kinetics and energy consumption for a three-stage electrocoagulation process for the recovery of au and ag from cyanide leachates. Metals (Basel). 2019;9(7):1–10.
  • Omwene PI, Kobya M. Treatment of domestic wastewater phosphate by electrocoagulation using Fe and Al electrodes: a comparative study. Process Saf Environ Prot. 2018;116:34–51.
  • Zhang N, Liu Y, Liu R, et al. Polymer inclusion membrane (PIM) containing ionic liquid as a proton blocker to improve waste acid recovery efficiency in electrodialysis process. J Memb Sci. 2019;581:18–27.
  • Al-Amshawee S, Yunus MYBM, Azoddein AAM, et al. Electrodialysis desalination for water and wastewater: a review. Chem Eng J. 2020;380:122231.
  • Yu YH, Su JF, Shih Y, et al. Hazardous wastes treatment technologies. Water Environ Res. 2020;92(10):1833–1860.
  • Dennis PG, Harnisch F, Yeoh YK, et al. Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl Environ Microbiol. 2013;79(13):4008–4014.
  • Hernandez CA, Osma JF. Microbial electrochemical systems: deriving future trends from historical perspectives and characterization strategies. Front Environ Sci. 2020;8:1–20.
  • Schröder U, Harnisch F, Angenent LT. Microbial electrochemistry and technology: terminology and classification. Energy Environ Sci. 2015;8(2):513–519.
  • Mohan SV, Sravan JS, Butti SK, et al., 2019. Microbial electrochemical technology: emerging and sustainable platform, in: microbial Electrochemical Technology. Elsevier, pp. 3–18.
  • Lakshmi S, Suvedha K, Sruthi R, et al. Hexavalent chromium sequestration from electronic waste by biomass of Aspergillus carbonarius. Bioengineered. 2020;11(1):708–717.
  • Ho NAD, Babel S, Sombatmankhong K. Factors influencing silver recovery and power generation in bio-electrochemical reactors. Environ Sci Pollut Res. 2017;24(26):21024–21037.
  • Kim Y, Lin Z, Jeon I, et al. Polyaniline nanofiber electrodes for reversible capture and release of mercury (II) from water. J Am Chem Soc. 2018;140(43):14413–14420.
  • Hu M, Sun Z, Hu J, et al. Simultaneous phenol detoxification and dilute metal recovery in cyclone electrochemical reactor. Ind Eng Chem Res. 2019;58(28):12642–12649.
  • Liu T, Yuan J, Zhang B, et al. Removal an Recovery of Uranium from Grounwater Using Direct Electrochemical Reuction Metho: performance an Implications. Environ Sci Technol. 2019;53(24):14612–14619.
  • Xu X, Sturm S, Samardzija Z, et al. A facile method for the simultaneous recovery of rare-earth elements and transition metals from Nd-Fe-B magnets. Green Chem. 2020;22(4):1105–1112.
  • Wang X, Li J, Wang Z, et al. Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output. Environ Sci Pollut Res. 2016;23(20):20368–20377.
  • Kim S, Kim J, Kim S, et al., 2018. Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant, Environmental Science: water Research and Technology. doi: 10.1039/c7ew00454k
  • Zhou Y, Hu C, Liu H, et al. Potassium-Ion Recovery with a Polypyrrole Membrane Electrode in Novel Redox Transistor Electrodialysis. Environ Sci Technol. 2020;54(7):4592–4600.
  • Luo X, Guo B, Luo J, et al. Recovery of lithium from wastewater using development of li ion-imprinted polymers. ACS Sustain Chem Eng. 2015;3(3):460–467.
  • Trimmer JT, Miller DC, Guest JS. Resource recovery from sanitation to enhance ecosystem services. Nat Sustain. 2019;2(8):681–690.
  • Varjani S, Joshi R, Srivastava VK, et al. Treatment of wastewater from petroleum industry: current practices and perspectives. Environ Sci Pollut Res. 2020a;27:27172–27180.
  • Bouzas A, Martí N, Grau S, et al. Implementation of a global P-recovery system in urban wastewater treatment plants. J Clean Prod. 2019;227:130–140.
  • Chowdhury RB, Moore GA, Weatherley AJ, et al. Key sustainability challenges for the global phosphorus resource, their implications for global food security, and options for mitigation. J Clean Prod. 2017;140:945–963.
  • Larsen TA, Hoffmann S, Lüthi C, et al. Emerging solutions to the water challenges of an urbanizing world. Science. 2016;80(352):928–933.
  • Perera MK, Englehardt JD. Simultaneous nitrogen and phosphorus recovery from municipal wastewater by electrochemical pH modulation. Sep Purif Technol. 2020;250:117166.
  • Ye Y, Ngo HH, Guo W, et al. Insight into chemical phosphate recovery from municipal wastewater. Sci Total Environ. 2017;576:159–171.
  • Pastushok O, Zhao F, Ramasamy DL, et al. Nitrate removal and recovery by capacitive deionization (CDI). Chem Eng J. 2019;375:121943.
  • Kim JH, An BM, Lim DH, et al. Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation. Water Res. 2018;132:200–210.
  • Lin L, Tam LH, Xia X, et al. Electro-fermentation of iron-enhanced primary sedimentation sludge in a two-chamber bioreactor for product separation and resource recovery. Water Res. 2019;157:145–154.
  • Wan Y, Huang Z, Zhou L, et al. Bioelectrochemical Ammoniation Coupled with Microbial Electrolysis for Nitrogen Recovery from Nitrate in Wastewater. Environ Sci Technol. 2020;54(5):3002–3011.
  • Su J, Lin X, Zheng S, et al. Mass transport-enhanced electrodeposition for the efficient recovery of copper and selenium from sulfuric acid solution. Sep Purif Technol. 2017;182:160–165.
  • The united nations world water development report 2018. Nature – based solutions for water, World Water Assessment Programme (UNESCO WWAP), https://unesdoc.unesco.org/images/0026/002614/261/424e.pdf. ( Last accessed on 16 March 2021)
  • Li X, Zhu W, Wu Y, et al. Recovery of potassium from landfill leachate concentrates using a combination of cation-exchange membrane electrolysis and magnesium potassium phosphate crystallization. Sep Purif Technol. 2015;144:1–7.
  • Do MH, Ngo HH, Guo W, et al. Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review. Sci Total Environ. 2020;712:135612.
  • Lu S, Li H, Tan G, et al. Resource recovery microbial fuel cells for urine-containing wastewater treatment without external energy consumption. Chem Eng J. 2019;373:1072–1080.
  • Rosenman A, Markevich E, Salitra G, et al. Review on Li‐sulfur battery systems: an integral perspective. Adv Energy Mater. 2015;5(16):1500212.
  • Khan MZ, Nizami AS, Rehan M, et al. Microbial electrolysis cells for hydrogen production and urban wastewater treatment: a case study of Saudi Arabia. Appl Energy. 2017;185:410–420.
  • Palomo-Briones R, Razo-Flores E, Bernet N, et al. Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: novel insights on their control. Applied Energy. 2017;198:77–87.
  • Katuri KP, Ali M, Saikaly PE. The role of microbial electrolysis cell in urban wastewater treatment: integration options, challenges, and prospects. Curr Opin Biotechnol. 2019;57:101–110.
  • Shen R, Jiang Y, Ge Z, et al. Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation. Appl Energy. 2018;212:509–515.
  • Li H, Chen S, Zhang Y, et al. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat Commun. 2018;9(1):1–12.
  • Li L, Kong Z, Xue Y, et al. A comparative long-term operation using up-flow anaerobic sludge blanket (UASB) and anaerobic membrane bioreactor (AnMBR) for the upgrading of anaerobic treatment of N, N-dimethylformamide-containing wastewater. Sci Total Environ. 2020;699:134370.
  • Li Y, Dong Z, Jiao L. Multifunctional Transition Metal-Based Phosphides in Energy-Related Electrocatalysis. Adv Energy Mater. 2020;10:1–36.
  • Liang D, Zhang L, He W, et al. Efficient hydrogen recovery with CoP-NF as cathode in microbial electrolysis cells. Appl Energy. 2020;264:114700.
  • Xu J, Xiuyan L, Gan L, et al. Fermentation liquor of CaO2 treated chemically enhanced primary sedimentation (CEPS) sludge for bioplastic biosynthesis. Sci Total Environ. 2018;644:547–555.
  • Moscoviz R, Toledo-Alarcón J, Trably E, et al. Electro-Fermentation: how To Drive Fermentation Using Electrochemical Systems. Trends Biotechnol. 2016;34(11):856–865.
  • Yang Y, Qiao S, Jin R, et al. Novel anaerobic electrochemical membrane bioreactor with a CNTs hollow fiber membrane cathode to mitigate membrane fouling and enhance energy recovery. Environ Sci Technol. 2018;53(2):1014–1021.
  • Merkel A, Ashrafi AM, Ondrušek M. The use of electrodialysis for recovery of sodium hydroxide from the high alkaline solution as a model of mercerization wastewater. J Water Process Eng. 2017;20:123–129.
  • Zhang X, Niu J, Hao X, et al. A novel electrochemically switched ion exchange system for phenol recovery and regeneration of NaOH from sodium phenolate wastewater. Sep Purif Technol. 2020;248:117125.
  • Pei S, Teng J, Ren N, et al. Low-temperature removal of refractory organic pollutants by electrochemical oxidation: role of interfacial joule heating effect. Environ Sci Technol. 2020;54(7):4573–4582.
  • Shin Y-U, Yun E-T, Kim J, et al. Electrochemical oxidation–membrane distillation hybrid process: utilizing electric resistance heating for distillation and membrane defouling through thermal activation of anodically formed persulfate. Environ Sci Technol. 2020;54(3):1867–1877.
  • Likosova EM, Keller J, Rozendal RA, et al. Understanding colloidal FeSx formation from iron phosphate precipitation sludge for optimal phosphorus recovery. J Colloid Interface Sci. 2013;403:16–21.
  • Likosova EM, Keller J, Poussade Y, et al. A novel electrochemical process for the recovery and recycling of ferric chloride from precipitation sludge. Water Res. 2014;51:96–103.
  • Hou D, Iddya A, Chen X, et al. Nickel-Based Membrane Electrodes Enable High-Rate Electrochemical Ammonia Recovery. Environ Sci Technol. 2018;52(15):8930–8938.
  • Sergienko N, Radjenovic J. Manganese oxide-based porous electrodes for rapid and selective (electro)catalytic removal and recovery of sulfide from wastewater. Appl Catal B Environ. 2020;267:118608.