2,463
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Online analysis of D-glucose and D-mannose aqueous mixtures using Raman spectroscopy: an in silico and experimental approach

&
Pages 4420-4431 | Received 22 Jun 2021, Accepted 08 Jul 2021, Published online: 24 Jul 2021

References

  • Claßen J, Aupert F, Reardon KF, et al. Spectroscopic sensors for in-line bioprocess monitoring in research and pharmaceutical industrial application. Anal Bioanal Chem. 2017;409(3):651–666.
  • Nagy B, Farkas A, Gyürkés M, et al. In-line Raman spectroscopic monitoring and feedback control of a continuous twin-screw pharmaceutical powder blending and tableting process. Int J Pharm. 2017;530(1–2):21–29.
  • Harms ZD, Shi Z, Kulkarni RA, et al. Characterization of near-infrared and raman spectroscopy for in-line monitoring of a low-drug load formulation in a continuous manufacturing process. Anal Chem. 2019;91(13):8045–8053.
  • Li Y, Anderson CA, Drennen JK, et al. Method development and validation of an inline process analytical technology method for blend monitoring in the tablet feed frame using raman spectroscopy. Anal Chem. 2018;90(14):8436–8444.
  • Shao J, Lin M, Li Y, et al. In vivo blood glucose quantification using raman spectroscopy. PLOS ONE. 2012;7(10):e48127.
  • Duraipandian S, Sylvest Bergholt M, Zheng W, et al. Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination. J Biomed Opt. 2012;17(8):081418.
  • Harting J, Kleinebudde P. Development of an in-line Raman spectroscopic method for continuous API quantification during twin-screw wet granulation. Eur J Pharm Biopharm. 2018;125:169–181.
  • McGoverin CM, Clark ASS, Holroyd SE, et al. Raman spectroscopic quantification of milk powder constituents. Anal Chim Acta. 2010;673(1):26–32.
  • Bergmann E, Baritaux J-C, Boit B, et al. Method for determining a degree of polymerisation of a Polymer. US2020340922(A1):2020.
  • Mutter ST, Zielinski F, Johannessen C, et al. Distinguishing epimers through Raman optical activity. J Phys Chem A. 2016;120(11):1908–1916.
  • Schievano E, Tonoli M, Rastrelli F. NMR quantification of carbohydrates in complex mixtures. A challenge on honey. Anal Chem. 2017;89(24):13405–13414.
  • Angyal SJ. The composition of reducing sugars in solution: current aspects. In: Horton D, editor. Advances in carbohydrate chemistry and biochemistry. Academic Press; Cambridge Ma, 1991. p. 19–35. DOI:10.1016/S0065-2318(08)60180-8.
  • Brown GD, Bauer J, Osborn HMI, et al. A solution NMR approach to determine the chemical structures of carbohydrates using the hydroxyl groups as starting points. ACS Omega. 2018;3(12):17957–17975.
  • Dudek M, Zajac G, Szafraniec E, et al. Raman optical activity and Raman spectroscopy of carbohydrates in solution. Spectrochim Acta A Mol Biomol Spectrosc. 2018;206. DOI:10.1016/j.saa.2018.08.017.
  • Gallina ME, Sassi P, Paolantoni M, et al. Vibrational analysis of molecular interactions in aqueous glucose solutions. Temperature and concentration effects. J Phys Chem B. 2006;110(17):8856–8864.
  • Song C, Fan W-H, Ding L, et al. Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions. Sci Rep. 2018;8(1):8964.
  • Mason PE, Neilson GW, Enderby JE, et al. Structure of aqueous glucose solutions as determined by neutron diffraction with isotopic substitution experiments and molecular dynamics calculations. J Phys Chem A. 2005;109(27):13104–13111.
  • Maugeri L, Busch S, McLain SE, et al. Structure-activity relationships in carbohydrates revealed by their hydration. Biochimica Et Biophysica Acta. General Subjects. 2017;1861(6):1486–1493.
  • Ibrahim M, Alaam M, El-Haes H, et al. Analysis of the structure and vibrational spectra of glucose and fructose. Eclética Química. 2006;31(3):15–21.
  • Macleod NA, Johannessen C, Hecht L, et al. From the gas phase to aqueous solution: vibrational spectroscopy, Raman optical activity and conformational structure of carbohydrates. International Journal of Mass Spectrometry, Solution vs. Gas Phase Biomolecule Structure. 2006;253(3):193–200.
  • Köhler JEH, Grczelschak-Mick N. The β-cyclodextrin/benzene complex and its hydrogen bonds – a theoretical study using molecular dynamics, quantum mechanics and COSMO-RS. Beilstein J Org Chem. 2013;9:118–134.
  • Dujardin N, 2009. Vitrification à l’état solide du glucose et maîtrise de la mutarotation (These de doctorat). Lille 1.
  • Csonka GI, Éliás K, Csizmadia IG. Relative stability of 1C4 and 4C1 chair forms of β-d-glucose: a density functional study. Chem Phys Lett. 1996;257(1–2):49–60.
  • Kacuráková M, Mathlouthi M. FTIR and laser-Raman spectra of oligosaccharides in water: characterization of the glycosidic bond. Carbohydr Res. 1996;284(2):145–157.
  • Mathlouthi M, Koenig JL. Vibrational spectra of carbohydrates. In: Tipson RS, Horton D, editors. Advances in carbohydrate chemistry and biochemistry. Academic Press; Cambridge Ma, 1987. p. 7–89. DOI:10.1016/S0065-2318(08)60077-3.
  • Eilers PHC. A perfect smoother. Anal Chem. 2003;75(14):3631–3636.
  • Balasubramani SG, Chen GP, Coriani S, et al. TURBOMOLE: modular program suite for ab initio quantum-chemical and condensed-matter simulations. J Chem Phys. 2020;152(18):184107.
  • Grimme S, Antony J, Ehrlich S, et al. A consistent and accurateab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys. 2010;132(15):154104.
  • Abraham MJ, Murtola T, Schulz R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25.
  • Momany FA, Appell M, Willett JL, et al. B3LYP/6-311++G** geometry-optimization study of pentahydrates of alpha- and beta-D-glucopyranose. Carbohydr Res. 2005;340(9):1638–1655.
  • Long DA. Vibrational Raman scattering. In: The Raman effect. John Wiley & Sons, Ltd; Hoboken NJ, 2002. p. 85–152. DOI:10.1002/0470845767.ch5.
  • Wiercigroch E, Szafraniec E, Czamara K, et al. Raman and infrared spectroscopy of carbohydrates: a review. Spectrochim Acta A Mol Biomol Spectrosc. 2017;185:317–335.
  • Zhong K, Yu -C-C, Dodia M, et al. Vibrational mode frequency correction of liquid water in density functional theory molecular dynamics simulations with van der Waals correction. Phys Chem Chem Phys. 2020;22(22):12785–12793.
  • Bégué D, Baraille I, Garrain PA, et al. Calculation of IR frequencies and intensities in electrical and mechanical anharmonicity approximations: application to small water clusters. J Chem Phys. 2010;133(3):034102.
  • Barclay MS, Elles CG, Caricato M. Benchmark study of ground-state raman spectra in conjugated molecules. J Chem Theory Comput. 2020;16(1):612–620.
  • Dittmer A, Stoychev GL, Maganas D, et al. Computation of NMR shielding constants for solids using an embedded cluster approach with DFT, double-hybrid DFT, and MP2. J Chem Theory Comput. 2020;16(11):6950–6967.
  • Silva C, Mennucci B, Vreven T. Density functional study of the optical rotation of glucose in aqueous solution. J Org Chem. 2004;69(23):8161–8164.
  • Cramer CJ, Truhlar DG. Implicit solvation models: equilibria, structure, spectra, and dynamics. Chem Rev. 1999;99:2161–2200.
  • Araujo-Andrade C, Ruiz F, Martínez-Mendoza JR, et al. Infrared and Raman spectra, conformational stability, ab initio calculations of structure, and vibrational assignment of α and β glucose. Journal of Molecular Structure: Theochem. 2005;714(2–3):143–146.
  • Bogojeski M, Vogt-Maranto L, Tuckerman ME, et al. Quantum chemical accuracy from density functional approximations via machine learning. Nat Commun. 2020;11(1):5223.
  • Brady JW. Molecular dynamics simulations of .alpha.-D-glucose in aqueous solution. J Am Chem Soc. 1989;111(14):5155–5165.
  • Feng T, Li M, Zhou J, et al. Application of molecular dynamics simulation in food carbohydrate research—a review. Innovative Food Sci Emerg Technol. 2015;31:1–13.
  • Fuchs K, Kaatze U. Molecular dynamics of carbohydrate aqueous solutions. Dielectric relaxation as a function of glucose and fructose concentration. J Phys Chem B. 2001;105(10):2036–2042.
  • Kirschner KN, Yongye AB, Tschampel SM, et al. GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem. 2008;29(4):622–655.