1,701
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

C–X–C motif chemokine ligand 12: a potential therapeutic target in Duchenne muscular dystrophy

& ORCID Icon
Pages 5428-5439 | Received 27 May 2021, Accepted 05 Aug 2021, Published online: 23 Aug 2021

References

  • Hoffman EP, Brown RH Jr., Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51(6):919–928.
  • Bulfield G, Siller WG, Wight PA, et al. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Nat Acad Sci. 1984;81(4):1189.
  • Moat SJ, Bradley DM, Salmon R, et al. Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet. 2013;21(10):1049–1053.
  • Yiu EM, Kornberg AJ. Duchenne muscular dystrophy. J Paediatr Child Health. 2015;51(8):759–764.
  • Fayssoil A, Nardi O, David Orlikowski AD. Cardiomyopathy in Duchenne muscular dystrophy: pathogenesis and therapeutics. Heart Fail Rev. 2010;15(1):103–107.
  • Eagle M, Baudouin Sv Fau-Chandler C, Chandler C, et al. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscular Disorders. 2002;12(10):926–929. (0960-8966 (Print)).
  • Eagle M, Bourke J, Bullock R, et al. Managing Duchenne muscular dystrophy–the additive effect of spinal surgery and home nocturnal ventilation in improving survival. Neuromuscul Disord. 2007;17(6):470–475.
  • Campbell KP, Kahl SD. Association of dystrophin and an integral membrane glycoprotein. Nature. 1989;338(6212):259–262.
  • Mendell JR, Moxley Rt Fau-Griggs RC, Griggs Rc Fau-Brooke MH, et al. Randomized, double-blind six-month trial of prednisone in Duchenne’s muscular dystrophy. New England Journal of Medicine. 1989;320(24):1592–1597. (0028-4793 (Print)).
  • McDonald CM, Henricson EK, Abresch RT, et al. Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study. Lancet. 2018;391(10119):451–461.
  • Mendell JR, Province MA, Moxley RT 3rd, et al. Clinical investigation of Duchenne muscular dystrophy. A methodology for therapeutic trials based on natural history controls. Arch Neurol. 1987;44(8):808–811.
  • Zhang T, Kong X. Recent advances of glucocorticoids in the treatment of Duchenne muscular dystrophy (Review). Exp Ther Med. 2021;21(5):447.
  • Chen YW, Zhao P, Borup R, et al. Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol. 2000;151(6):1321–1336.
  • Nannini M, Pantaleo MA, Maleddu A, et al. Gene expression profiling in colorectal cancer using microarray technologies: results and perspectives. Cancer Treat Rev. 2009;35(3):201–209.
  • Tian LJ, Cao JH, Deng XQ, et al. Gene expression profiling of Duchenne muscular dystrophy reveals characteristics along disease progression. Genetics and Molecular Research. 2014;13(1):1402–1411. (1676-5680 (Electronic)).
  • Xue G, Hua L, Zhou N, et al. Characteristics of immune cell infiltration and associated diagnostic biomarkers in ulcerative colitis: results from bioinformatics analysis. Bioengineered. 2021;12(1):252–265.
  • Wang J, Zhang C. Identification and validation of potential mRNA- microRNA- long-noncoding RNA (mRNA-miRNA-lncRNA) prognostic signature for cervical cancer. Bioengineered. 2021;12(1):898–913.
  • Hewett M. PharmGKB: the pharmacogenetics knowledge base. Nucleic Acids Res. 2002;30(1):163–165.
  • Klein TE, Altman RB. PharmGKB: the pharmacogenetics and pharmacogenomics knowledge base. Pharmacogenomics J. 2004;4(1):1.
  • Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res. 2011;39(Databaseissue):D1005–10.
  • Clough E, Barrett T. The gene expression omnibus database. statistical genomics. Methods Mol Biol. 2016;1418:93–110.
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41(Database issue):D991–5.
  • Huang DW, Sherman BT, Tan Q, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183.
  • Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–D61.
  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–29.
  • von Mering C, Huynen M, Jaeggi D, et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258–261.
  • Franz M, Lopes CT, Huck G, et al. Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics. 2016;32(2):309–311.
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Nat Acad Sci. 2005;102(43):15545.
  • Barik A, Lu Y, Sathyamurthy A, et al. LRP4 is critical for neuromuscular junction maintenance. J Neurosci. 2014;34(42):13892–13905.
  • Ljubicic V, Jasmin BJ. Metformin increases peroxisome proliferator-activated receptor gamma Co-activator-1alpha and utrophin a expression in dystrophic skeletal muscle. Muscle Nerve. 2015;52(1):139–142.
  • Dong X, Hui T, Chen J, et al. Metformin increases sarcolemma integrity and ameliorates neuromuscular deficits in a murine model of duchenne muscular dystrophy. Front Physiol. 2021;12. DOI:10.3389/fphys.2021.642908
  • Mantuano P, Sanarica F, Conte E, et al. Effect of a long-term treatment with metformin in dystrophic mdx mice: a reconsideration of its potential clinical interest in Duchenne muscular dystrophy. Biochem Pharmacol. 2018;154:89–103.
  • Hoffman EP. The discovery of dystrophin, the protein product of the Duchenne muscular dystrophy gene. FEBS J. 2020;287(18):3879–3887.
  • Sinha R, Sarkar S, Khaitan T, et al. Duchenne muscular dystrophy: Case report and review. J Family Med Prim Care. 2017;6(3):654–656.
  • Smith LR, Barton ER. Regulation of fibrosis in muscular dystrophy. Matrix Biol. 2018;68-69:602–615.
  • Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17(4):347–361.
  • Tian C, Wong BL, Hornung L, et al. Bone health measures in glucocorticoid-treated ambulatory boys with Duchenne muscular dystrophy. Neuromuscul Disord. 2016;26(11):760–767.
  • Bushby K, Finkel R, Birnkrant DJ, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010;9(1):77–93.
  • Crabtree NJ, Adams JE, Padidela R, et al. Growth, bone health & ambulatory status of boys with DMD treated with daily vs. intermittent oral glucocorticoid regimen. Bone. 2018;116:181–186.
  • Nagasawa T, Tachibana K, Kishimoto T. A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection. Semin Immunol. 1998;10(3):179–185.
  • Martinelli GB, Olivari D, Re Cecconi AD, et al. Activation of the SDF1/CXCR4 pathway retards muscle atrophy during cancer cachexia. Oncogene. 2016;35(48):6212–6222.
  • Brzoska E, Kowalski K, Markowska-Zagrajek A, et al. Sdf-1 (CXCL12) induces CD9 expression in stem cells engaged in muscle regeneration. Stem Cell Res Ther. 2015;6(1):46.
  • Maeda Y, Yonemochi Y, Nakajyo Y, et al. CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration. Sci Rep. 2017;7(1):3305.
  • Brzoska E, Kowalewska M, Markowska-Zagrajek A, et al. Sdf-1 (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biol Cell. 2012;104(12):722–737.
  • Yang W, Hu P. Skeletal muscle regeneration is modulated by inflammation. J Orthop Translat. 2018;13:25–32.
  • De Paepe B. Progressive skeletal muscle atrophy in muscular dystrophies: a role for toll-like receptor-signaling in disease pathogenesis. Int J Mol Sci. 2020;21(12):12.
  • Adams DH, Rlloyd A. Chemokines: leucocyte recruitment and activation cytokines. Lancet. 1997;349(9050):490–495.
  • Turner MD, Nedjai B, Hurst T, et al. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 2014;1843(11):2563–2582.
  • De Paepe B, Creus KK, Martin JJ, et al. Upregulation of chemokines and their receptors in Duchenne muscular dystrophy: potential for attenuation of myofiber necrosis. Muscle Nerve. 2012;46(6):917–925.
  • Pescatori M, Broccolini A, Minetti C, et al. Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression. FASEB J. 2007;21(4):1210–1226.
  • Abdel-Salam E, Abdel-Meguidr Ie Fau-Shatla R, Shatla R Fau-Korraa SS, et al. Stromal cell-derived factors in Duchenne muscular dystrophy. Acta Myol. 2010 Dec;29(3):398–403.
  • Kucia M, Reca R, Miekus K, et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells. 2005;23(7):879–894.
  • Hattori K, Heissig B, Tashiro K, et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood. 2001;97(11):3354–3360.
  • Hunger C, Odemis V, Engele J. Expression and function of the SDF-1 chemokine receptors CXCR4 and CXCR7 during mouse limb muscle development and regeneration. Exp Cell Res. 2012;318(17):2178–2190.
  • Ratajczak MZ, Majka M, Kucia M, et al. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells. 2003;21(3):363–371.
  • Perez AL, Bachrach E, Illigens BM, et al. CXCR4 enhances engraftment of muscle progenitor cells. Muscle Nerve. 2009;40(4):562–572.
  • Rosenberg AS, Puig M, Nagaraju K, et al. Immune-mediated pathology in Duchenne muscular dystrophy. Sci Transl Med. 2015;7(299):299rv4–rv4.
  • Kuhne MR, Mulvey T, Belanger B, et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin Cancer Res. 2013;19(2):357–366.
  • Porter JD, Guo W, Merriam AP, et al. Persistent over-expression of specific CC class chemokines correlates with macrophage and T-cell recruitment in mdx skeletal muscle. Neuromuscul Disord. 2003;13(3):223–235.
  • Cascabulho CM, Beghini DG, Meuser-Batista M, et al. Immunoregulatory function of cardiac gammadelta T cells in dystrophin-deficient mice. J Immunol. 2016;197(9):3531–3544.
  • Grounds MD, Terrill JR, Al-Mshhdani BA, et al. Biomarkers for Duchenne muscular dystrophy: myonecrosis, inflammation and oxidative stress. Dis Model Mech. 2020;13(2):2.
  • Miyatake S, Shimizu-Motohashi Y, Takeda S, et al. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors. Drug Des Devel Ther. 2016;10:2745–2758.
  • Rosenberg AS, Puig M, Nagaraju K, et al. Immune-mediated pathology in Duchenne muscular dystrophy. Sci Transl Med. 2015;7(299):299rv4.
  • Adami Lami C, Fau-Bruni A, Bruni A Fau - Forgeschi G, et al. Granulocyte function in Duchenne’s progressive muscular dystrophy. 1984 Dec;20(4):460–468.
  • Peterson JM, Wang DJ, Shettigar V, et al. NF-kappaB inhibition rescues cardiac function by remodeling calcium genes in a Duchenne muscular dystrophy model. Nat Commun. 2018;9(1):3431.
  • Hammers DW, Sleeper MM, Forbes SC, et al. Disease-modifying effects of orally bioavailable NF-kappaB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1(21):e90341.
  • Kranig SA, Tschada R, Braun M, et al. Dystrophin deficiency promotes leukocyte recruitment in mdx mice. Pediatr Res. 2019;86(2):188–194.
  • Spence HJ, Chen YJ, Winder SJ. Muscular dystrophies, the cytoskeleton and cell adhesion. Bioessays. 2002;24(6):542–552.
  • Shu C, Kaxon-Rupp AN, Collado JR, et al. Development of a high-throughput screen to identify small molecule enhancers of sarcospan for the treatment of Duchenne muscular dystrophy. Skelet Muscle. 2019;9(1):32.
  • LoMauro A, Romei M, Gandossini S, et al. Evolution of respiratory function in Duchenne muscular dystrophy from childhood to adulthood. Eur Respir J. 2018;51(2):2.
  • Sheehan DW, Birnkrant DJ, Benditt JO, et al. Respiratory management of the patient with duchenne muscular dystrophy. Pediatrics. 2018;142(Supplement 2):S62–S71. (1098-4275 (Electronic)).
  • Mosqueira M, Willmann G, Ruohola-Baker H, et al. Chronic hypoxia impairs muscle function in the drosophila model of Duchenne’s Muscular Dystrophy (DMD). PLOS ONE. 2010;5(10):e13450.
  • Yucel N, Chang AC, Day JW, et al. Humanizing the mdx mouse model of DMD: the long and the short of it. NPJ Regen Med. 2018;3(1):4.
  • Whitehead NP, Yeung EW, Allen DG. Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species. Clin Exp Pharmacol Physiol. 2006;33(7):657–662.