2,205
Views
6
CrossRef citations to date
0
Altmetric
Review

Application of three-dimensional printing technology in peripheral hip diseases

, , , &
Pages 5883-5891 | Received 01 Jun 2021, Accepted 07 Aug 2021, Published online: 03 Sep 2021

References

  • Kim BS, Lim JY, Ha YC. Recent Epidemiology of Hip Fractures in South Korea [J]. Hip Pelvis. 2020;32(3):119–124.
  • Loder RT, Skopelja EN. The Epidemiology and Demographics of Hip Dysplasia [J]. ISRN Orthop. 2011;2011:238607.
  • Clegg TE, Roberts CS, Greene JW, et al. Hip dislocations–epidemiology, treatment, and outcomes [J]. Injury. 2010;41(4):329–334.
  • Woo SH, Sung MJ, Park KS, et al. Three-dimensional-printing Technology in Hip and Pelvic Surgery: current Landscape [J]. Hip Pelvis. 2020;32(1):1–10.
  • Gross BC, Erkal JL, Lockwood SY, et al. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences [J]. Anal Chem. 2014;86(7):3240–3253.
  • Leukers B, Gülkan H, Irsen SH, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing [J]. J Mater Sci Mater Med. 2005;16(12):1121–1124.
  • Mironov V, Boland T, Trusk T, et al. Organ printing: computer-aided jet-based 3D tissue engineering [J]. Trends Biotechnol. 2003;21(4):157–161.
  • Dall’Ava L, Hothi H, Henckel J, et al. Osseointegration of retrieved 3D-printed, off-the-shelf acetabular implants [J]. Bone Joint Res. 2021;10(7):388–400.
  • Schaeffer EK, Study Group I, Mulpuri K. Developmental dysplasia of the hip: addressing evidence gaps with a multicentre prospective international study [J]. Med J Aust. 2018;208(8):359–364.
  • Yang S, Zusman N, Lieberman E, et al. Developmental Dysplasia of the Hip [J]. Pediatrics. 2019;143(1):e20181147.
  • Smith RW, Egger P, Coggon D, et al. Osteoarthritis of the hip joint and acetabular dysplasia in women [J]. Ann Rheum Dis. 1995;54(3):179–181.
  • Mao Y, Xu C, Xu J, et al. The use of customized cages in revision total hip arthroplasty for Paprosky type III acetabular bone defects [J]. Int Orthop. 2015;39(10):2023–2030.
  • Willemsen K, Tryfonidou M, Sakkers R, et al. Patient-specific 3D-printed shelf implant for the treatment of hip dysplasia: anatomical and biomechanical outcomes in a canine model [J]. J Orthop Res. 2021; DOI:10.1002/jor.25133.
  • Tserovski S, Georgieva S, Simeonov R, et al. Advantages and disadvantages of 3D printing for pre-operative planning of revision hip surgery [J]. J Surg Case Rep. 2019;2019(7):rjz214.
  • Liu K, Li Z, Ma Y, et al. 3D-printed pelvis model is an efficient method of osteotomy simulation for the treatment of developmental dysplasia of the hip [J]. Exp Ther Med. 2020;19(2):1155–1160.
  • Schneider AK, Pierrepont JW, Hawdon G, et al. Clinical accuracy of a patient-specific femoral osteotomy guide in minimally-invasive posterior hip arthroplasty [J]. Hip Int. 2018;28(6):636–641.
  • Xing QQ, Zhong D, Pan YX, et al. A comparative study of patients’ subjective feelings toward total hip arthroplasty with patient‐specific instruments and traditional total hip arthroplasty [J]. Orthop Surg. 2020;12(1):269–276.
  • Yan L, Wang P, Zhou H. 3D Printing Navigation Template Used in Total Hip Arthroplasty for Developmental Dysplasia of the Hip [J]. Indian J Orthop. 2020;54(6):856–862.
  • Zheng P, Xu P, Yao Q, et al. 3D-printed navigation template in proximal femoral osteotomy for older children with developmental dysplasia of the hip [J]. Sci Rep. 2017;7(44993: DOI:10.1038/srep44993.
  • Zhang Y, Rao Z, Zhang J, et al. 3D Printed Guides and Preoperative Planning for Uncemented Stem Anteversion Reconstruction during Hip Arthroplasty: a Pilot Study [J]. Biomed Res Int. 2021;2021(6621882: DOI:10.1155/2021/6621882.
  • Ferretti A, Iannotti F, Proietti L, et al. The Accuracy of Patient-Specific Instrumentation with Laser Guidance in a Dynamic Total Hip Arthroplasty: a Radiological Evaluation [J]. Sensors (Basel). 2021;21(12):4232.
  • Zhang H, Liu Y, Dong Q, et al. 3D printed integral customized acetabular prosthesis for anatomical rotation center restoration in hip arthroplasty for developmental dysplasia of the hip crowe type III: a Case Report [J]. Medicine (Baltimore). 2020;99(40):e22578.
  • Geng X, Li Y, Li F, et al. A new 3D printing porous trabecular titanium metal acetabular cup for primary total hip arthroplasty: a minimum 2-year follow-up of 92 consecutive patients [J]. J Orthop Surg Res. 2020;15(1):383.
  • Qiang T, Wen DH, Hu C, et al. Preliminary application of 3D-printed individualised guiding templates for total hip arthroplasty in Crowe type IV developmental dysplasia of the hip [J]. Hip Int. 2020;1120700020948006. DOI:10.1177/1120700020948006.
  • Huang Y, Zhou YX, Tian H, et al. 7-year Follow-up of A Porous Coated Trabecular Titanium Cup Manufactured with Electron Beam Melting Technique in Primary Total Hip Arthroplasty [J]. Orthop Surg. 2021;13(3):817–824.
  • Hothi H, Dall’Ava L, Henckel J, et al. Evidence of structural cavities in 3D printed acetabular cups for total hip arthroplasty [J]. J Biomed Mater Res B Appl Biomater. 2020;108(5):1779–1789.
  • Houdek MT, Wyles CC, Labott JR, et al. Durability of Hemiarthroplasty for Pathologic Proximal Femur Fractures [J]. J Arthroplasty. 2017;32(12):3607–3610.
  • Tang G, Liu L, Xiao Z, et al. CircRAB3IP upregulates twist family BHLH transcription factor (TWIST1) to promote osteosarcoma progression by sponging miR-580-3p [J]. Bioengineered. 2021;12(1):3385–3397.
  • Ding J, Cao J, Chen Z, et al. The role of long intergenic noncoding RNA 00511 in malignant tumors: a meta-analysis, database validation and review [J]. Bioengineered. 2020;11(1):812–823.
  • Low SS, Pan Y, Ji D, et al. Smartphone-based portable electrochemical biosensing system for detection of circulating microRNA-21 in saliva as a proof-of-concept [J]. Sens Actuators B Chem. 2020;308:127718.
  • Menendez LR, Ahlmann ER, Kermani C, et al. Endoprosthetic reconstruction for neoplasms of the proximal femur [J]. Clin Orthop Relat Res. 2006;450:46–51.
  • Sun W, Zan P, Ma X, et al. Surgical resection and reconstructive techniques using autologous femoral head bone-grafting in treating partial acetabular defects arising from primary pelvic malignant tumors [J]. BMC Cancer. 2019;19(1):969.
  • How CW, Ong YS, Low SS, et al. How far have we explored fungi to fight cancer?; proceedings of the Seminars in cancer biology, F, [C]. 2021. Academic Press, Elsevier.
  • Chia WY, Kok H, Chew KW, et al. Can algae contribute to the war with Covid-19? [J]. Bioengineered. 2021;12(1):1226–1237.
  • Pan Q, Wu K, Tan J, et al. Anti-neoplastic characteristics and potential targets of calycosin against bisphenol A-related osteosarcoma: bioinformatics analysis [J]. Bioengineered. 2021;12(1):4278–4288.
  • Sallent A, Vicente M, Reverté MM, et al. How 3D patient-specific instruments improve accuracy of pelvic bone tumour resection in a cadaveric study [J]. Bone Joint Res. 2017;6(10):577–583.
  • Heunis JC, Cheah JW, Sabnis AJ, et al. Use of three-dimensional printing and intraoperative navigation in the surgical resection of metastatic acetabular osteosarcoma [J]. BMJ Case Rep. 2019;12(9):e230238.
  • Angelini A, Trovarelli G, Berizzi A, et al. Three-dimension-printed custom-made prosthetic reconstructions: from revision surgery to oncologic reconstructions [J]. Int Orthop. 2019;43(1):123–132.
  • Wu J, Xie K, Luo D, et al. Three-dimensional printing-based personalized limb salvage and reconstruction treatment of pelvic tumors [J]. J Surg Oncol. 2021;124(3):420–430.
  • Liang H, Ji T, Zhang Y, et al. Reconstruction with 3D-printed pelvic endoprostheses after resection of a pelvic tumour [J]. Bone Joint J. 2017;99-B(2):267–275.
  • Wang J, Min L, Lu M, et al. What are the Complications of Three-dimensionally Printed, Custom-made, Integrative Hemipelvic Endoprostheses in Patients with Primary Malignancies Involving the Acetabulum, and What is the Function of These Patients? [J]. Clin Orthop Relat Res. 2020;478(11):2487–2501.
  • Zhu D, Fu J, Wang L, et al. Reconstruction with customized, 3D-printed prosthesis after resection of periacetabular Ewing’s sarcoma in children using “triradiate cartilage-based” surgical strategy: atechnical note [J]. J Orthop Translat. 2021;28:108–117.
  • Wan L, Zhang X, Zhang S, et al. Clinical feasibility and application value of computer virtual reductioncombined with 3D printing technique in complex acetabular fractures [J]. Exp Ther Med. 2019;17(5):3630–3636.
  • Butterwick D, Papp S, Gofton W, et al. Acetabular fractures in the elderly: evaluation and management [J]. J Bone Joint Surg Am. 2015;97(9):758–768.
  • Olson SA, Bay BK, Hamel A. Biomechanics of the hip joint and the effects of fracture of the acetabulum [J]. Clin Orthop Relat Res. 1997;339:92–104.
  • Yu C, Yu W, Mao S, et al. Traditional three-dimensional printing technology versus three-dimensional printing mirror model technology in the treatment of isolated acetabular fractures: a retrospective analysis [J]. J Int Med Res. 2020;48(5):300060520924250.
  • Nelson DW, Duwelius PJ. CT-guided fixation of sacral fractures and sacroiliac joint disruptions [J]. Radiology. 1991;180(2):527–532.
  • Ansari S, Barik S, Singh SK, et al. Role of 3D printing in the management of complex acetabular fractures: a comparative study [J]. Eur J Trauma Emerg Surg. 2020. DOI:10.1007/s00068-020-01485-z
  • Huang JH, Liao H, Tan XY, et al. Surgical treatment for both-column acetabular fractures using pre-operative virtual simulation and three-dimensional printing techniques [J]. Chin Med J (Engl). 2020;133(4):395–401.
  • Chen K, Yang F, Yao S, et al. Application of computer-assisted virtual surgical procedures and three-dimensional printing of patient-specific pre-contoured plates in bicolumnar acetabular fracture fixation [J]. Orthop Traumatol Surg Res. 2019;105(5):877–884.
  • Li YT, Hung CC, Chou YC, et al. Surgical Treatment for Posterior Dislocation of Hip Combined with Acetabular Fractures Using Preoperative Virtual Simulation and Three-Dimensional Printing Model-Assisted Precontoured Plate Fixation Techniques [J]. Biomed Res Int. 2019;2019:3971571.
  • Maini L, Verma T, Sharma A, et al. Evaluation of accuracy of virtual surgical planning for patient-specific pre-contoured plate in acetabular fracture fixation [J]. Arch Orthop Trauma Surg. 2018;138(4):495–504.
  • Weidert S, Andress S, Linhart C, et al. 3D printing method for next-day acetabular fracture surgery using a surface filtering pipeline: feasibility and 1-year clinical results [J]. Int J Comput Assist Radiol Surg. 2020;15(3):565–575.
  • Saeed K. Diagnostics in prosthetic joint infections [J]. J Antimicrob Chemother. 2014;69(Suppl 1):i11–19.
  • Geipel U. Pathogenic organisms in hip joint infections [J]. Int J Med Sci. 2009;6(5):234–240.
  • Vasso M, Braile A, Ascione F, et al. Two-stage reimplantation in periprosthetic knee infection [J]. Eur Rev Med Pharmacol Sci. 2019;23(2 Suppl):51–58.
  • Kim TWB, Lopez OJ, Sharkey JP, et al. 3D printed liner for treatment of periprosthetic joint infections [J]. Med Hypotheses. 2017;102:65–68.
  • Zhu Y, Liu K, Deng J, et al. 3D printed zirconia ceramic hip joint with precise structure and broad-spectrum antibacterial properties [J]. Int J Nanomedicine. 2019;14:5977–5987.
  • Karaji ZG, Jahanmard F, Mirzaei AH, et al. A multifunctional silk coating on additively manufactured porous titanium to prevent implant-associated infection and stimulate bone regeneration [J]. Biomed Mater. 2020;15(6):065016.
  • Bandyopadhyay A, Traxel KD, Bose S. Nature-inspired materials and structures using 3D Printing [J]. Mater Sci Eng R Rep. 2021;145:100609.