5,946
Views
33
CrossRef citations to date
0
Altmetric
Review

Genetic modification for enhancing bacterial cellulose production and its applications

, , , &
Pages 6793-6807 | Received 13 Jul 2021, Accepted 11 Aug 2021, Published online: 14 Sep 2021

References

  • Patel AK, Pandey A, Singhania RR. Production of celluloytic enzymes for lignocellulosic biomass hydrolysis. 2nd. Pandey A, Larroche C, Gnansounou E, et al, editors. ISBN 9780128168561. Biofuels: alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels, Cambridge, MA, USA: Academic Press. 2019. pp. 401–426.
  • Patel AK, Singhania RR, Sim SJ, et al. Thermostable cellulases: current status and perspectives. Bioresour Technol. 2019;279:385–392.
  • Singh A, Jasso RMR, Gonzalez-Gloria KD, et al. The enzyme biorefinery platform for advanced biofuels production. Bioresour Technol Rep. 2019;7:100257.
  • Singhania RR, Dixit P, Patel AK, et al. Role and significance of lytic polysaccharide monooxygenases (LPMOs) in lignocellulose deconstruction. Bioresour Technol. 2021;335:125261.
  • Singh A, Rodríguez Jasso RM, Saxena R, et al. Subcritical water pretreatment for agave bagasse fractionation from tequila production and enzymatic susceptibility. Bioresour Technol. 2021. DOI:10.1016/j.biortech.2021.125536.
  • Agrawal R, Verma A, Singhania RR, et al. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioresour Technol. 2021;332:125024.
  • Xiao W, Li H, Xia W, et al. Co-expression of cellulase and xylanase genes in Sacchromyces cerevisiae toward enhanced bioethanol production from corn stover. Bioengineered. 2019;10(1):513–521.
  • Gilmore SP, Henske JK, O’malley A. Driving biomass breakdown through engineered cellulosomes. Bioengineered. 2015;6(4):204–208.
  • Chen R. A paradigm shift in biomass technology from complete to partial cellulose hydrolysis: lessons learned from nature. Bioengineered. 2014;6(2):69–72.
  • Singh A, Patel AK, Adsul M, et al. Genetic modification: a tool for enhancing cellulase secretion. Biofuel Res J. 2017;4(2):600–610.
  • Jozala AF, Lencastre-Novaes LC, Lopes AM, et al. Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol. 2016;100(5):2063–2072.
  • Moradi M, Jacek P, Farhangfar A, et al. The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: a review. Int J Biol Macromol. 2021;183:635–650.
  • Chen G, Wu G, Chen L, et al. Performance of nanocellulose-producing bacterial strains in static and agitated cultures with different starting pH. Carbohydr Polym. 2019;215:280–288.
  • Reiniati I, Hrymak AN, Margaritis A. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals. Crit Rev Biotechnol. 2017;37(4):510–524.
  • Ye J, Zheng S, Zhang Z, et al. Bacterial cellulose production by Acetobacter xylinum ATCC 23767 using tobacco waste extract as culture medium. Bioresour Technol. 2019;274:518–524.
  • Jahan F, Kumar V, Saxena RK. Distillery effluent as a potential medium for bacterial cellulose production: a biopolymer of great commercial importance. Bioresour Technol. 2018;250:922–926.
  • Kumar V, Sharma DK, Bansal V, et al. Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacter pasteurianus of RSV-4 bacterium. Bioresour Technol. 2019;275:430e433.
  • Cheng Z, Yang R, Liu X, et al. Green synthesis of bacterial cellulose via acetic acid pre-hydrolysis liquor of agricultural corn stalk used as carbon source. Bioresour Technol. 2017;234:8–14.
  • Chen L, Hong F, Yang XX, et al. Biotransformation of wheat straw to bacterial cellulose and its mechanism. Bioresour Technol. 2013;135:464e468.
  • Lin D, Lopez-Sanchez P, Li R, et al. Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol. 2014;151:113–119.
  • Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in bacteria. Microbiol Rev. 1991;55(1):35–58.
  • Tanaka M, Murakami S, Shinke R, et al. Genetic characteristics of cellulose-forming acetic acid bacteria identified phenotypically as Gluconacetobacter xylinus. Biosci Biotechnol Biochem. 2000;64(4):757–760.
  • Moniri M, Boroumand Moghaddam A, Azizi S, et al. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials. 2017;7(9):257.
  • Jedrzejczak-Krzepkowska M, Kubiak K, Ludwicka K. Bacterial nanocellulose synthesis, recent findings. 1st. Nanocellulose B, Gama M, Dourado F, et al, editors. e-book, ISBN: 9780444634665. From biotechnology to bio-economy, Amsterdam: Elsevier. 2016. pp. 19–46.
  • Gullo M, China SL, Petroni G, et al. Exploring K2G30 genome: a high bacterial cellulose producing strain in glucose and mannitol-based media. Front Microbiol. 2019;10: 58.
  • Santoso SP, Chou CC, Lin SP, et al. Enhanced production of bacterial cellulose by Komactobacter intermedius using statistical modeling. Cellulose. 2020;27(5):2497–2509.
  • Hong F, Guo X, Zhang S, et al. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresour Technol. 2012;104:503–508.
  • Tsouko E, Maina S, Ladakis D, et al. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Ren. Energ. 2020;160:944–954.
  • Calderón-Toledo S, Horue M, Alvarez VA, et al. Isolation and partial characterization of Komagataeibacter sp. SU12 and optimization of bacterial cellulose production using Mangifera indica extracts. J Chem Technol Biotechnol. 2021. DOI:10.1007/s10570-019-02961-5.
  • Revin V, Liyaskina E, Nazarkina M, et al. Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol. 2018;49:151–159.
  • Liu K, Catchmark JM. Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing Gluconacetobacter hansenii and Lactococcus lactis in a two-vessel circulating system. Bioresour Technol. 2019;290:121715.
  • Saxena IM, Kudlicka K, Okuda K, et al. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol. 1994;176(18):5735–5752.
  • Florea M, Hagemann H, Santosa G, et al. Proceedings of the national academy of sciences. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. 2016;113(24):E3431–E3440.
  • Kubiak K, Kurzawa M, Jędrzejczak‐Krzepkowska M, et al. Complete genome sequence of Gluconacetobacter xylinus E25 strain—Valuable and effective producer of bacterial nanocellulose. J Biotechnol. 2014;176:18–19.
  • Jang WD, Kim TY, Kim HU, et al. Genomic and metabolic analysis of Komagataeibacter xylinus DSM 2325 producing bacterial cellulose nanofiber. Biotechnol Bioeng. 2019;116(12):3372–3381.
  • Bielecki S, Krystynowicz A, Turkiewicz M, et al. Bacterial cellulose. In: Biopolymer Online. Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA; 2005; pp. 40–43.
  • Ross P, Aloni Y, Weinhouse C, et al. An unusual guanyl oligonucleotide regulates cellulose synthesis in Acetobacter xylinum. FEBS Lett. 1985;186(2):191–196.
  • Fujiwara T, Komoda K, Sakurai N, et al. The c-di-GMP recognition mechanism of the PilZ domain of bacterial cellulose synthase subunit A. Biochem Biophys Res Commun. 2013;431(4):802–807.
  • Römling U, Galperin MY, Gomelsky M. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol. Biol. Rev. 2013;77:1–52.
  • Tal R, Wong HC, Calhoon R, et al. Three cdg operons control cellular turnover of cyclic Di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in Isoenzymes. J Bacteriol. 1998;180(17):4416–4425.
  • Römling U. Cyclic di-GMP, an established secondary messenger still speeding up. Environ Microbiol. 2012;14(8):1817–1829.
  • Umeda Y, Hirano A, Ishibashi M, et al. Cloning of cellulose synthase genes from Acetobacter xylinum JCM 7664: implication of a novel set of cellulose synthase genes. DNA Res. 1999;6(2):109–115.
  • Römling U, Galperin MY. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol. 2015;23(9):545–557.
  • McNamara JT, Morgan JLW, Zimmer J. A molecular description of cellulose biosynthesis. Annu Rev Biochem. 2015;84(1):895–921. https://doi.org/10.1146/annurev-biochem060614–033930
  • Augimeri RV, Varley AJ, Strap JL. Establish ing a role for bacterial cellulose in environmental interactions: lessons learned from diverse biofilm-produ cing Proteobacteria. Front Microbiol. 2015;6:1282. eCollection 2015
  • Hernandez-Arriaga AM, Cerro CD, Urbina L, et al. Genome sequence and characterization of the BCS clusters for the production of nanocellulose from the low pH resistant strain Komagataeibacter medellinensis ID13488. Microb Biotechnol. 2019;12(4):620–632.
  • Ryngajłło M, Jędrzejczak-Krzepkowska M, Kubiak K, et al. Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives. Appl Microbiol Biotechnol. 2020;104(15):6565–6585.
  • Choi MS, Shin JE. The nanofication and functionalization of bacterial cellulose and its applications. Nanomaterials. 2020;10(3):406.
  • Skočaj M. Bacterial nanocellulose in papermaking. Cellulose. 2019;26(11):6477–6488.
  • Benziman M, Mazover A. Nicotinamide Adenine Dinucleotide- and Nicotinamide Adenine Dinucleotide Phosphate-specific Glucose 6-Phosphate Dehydrogenases of Acetobacter xylinum and their role in the regulation of the pentose cycle. J Biol Chem. 1973;248(5):1603–1608.
  • Swissa M, Benziman M. Factors affecting the activity of citrate synthase of Acetobacter xylinum and its possible regulatory role. Biochem J. 1976;153(2):173–179.
  • Gromet Z, Schramm M, Hestrin S. Synthesis of cellulose by Acetobacter xylinum. 4. Enzyme systems present in a crude extract of glucose-grown cells. Biochem J. 1957;67(4):679–689.
  • Gao H, Sun Q, Han Z, et al. Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydr Polym. 2020;227:115323.
  • Tanskul S, Amornthatree K, Jaturonlak N. A new cellulose-producing bacterium, Rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydr Polym. 2013;92(1):421–428.
  • Zhang W, Wang X, Qi X, et al. Isolation and identification of a bacterial cellulose synthesizing strain from kombucha in different conditions: gluconacetobacter xylinus ZHCJ618. Food Sci Biotechnol. 2018;27(3):705–713.
  • Matsutani M, Ito K, Azuma Y, et al. Adaptive mutation related to cellulose producibility in Komagataeibacter medellinensis (Gluconacetobacter xylinus) NBRC 3288. Appl Microbiol Biotechnol. 2015;99(17):7229–7240.
  • Hur DH, Rhee HS, Lee JH, et al. Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene. Biochemical Engineering Journal. 2020;156:107527.
  • Liu M, Li S, Xie Y, et al. Enhanced bacterial cellulose pro duction by Gluconacetobacter xylinus via expression of Vitreoscilla haemoglobin and oxygen tension regulation. Appl Microbiol Biotechnol. 2018;102(3):1155–1165.
  • Bae SO, Sugano Y, Ohi K, et al. Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Appl Microbiol Biotechnol. 2004;65(3):315–322.
  • Jacek P, Ryngajłło M, Bielecki S. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769, Appl. Microb. Cell Physiol. 2019;103:5339–5353.
  • Kawano S, Tajima K, Uemori Y, et al. Cloning of cellulose synthesis related genes from Acetobacter xylinum ATCC23769 and ATCC53582: comparison of cellulose synthetic ability between strains. DNA Res. 2002;9(5):149–156.
  • Singhania RR, Patel AK, Pandey A, et al. Genetic modification: a tool for enhancing beta-glucosidase production for biofuel application. Bioresour Technol. 2017;245:1352–1361.
  • Wang X, Wu Y, Zhou Y. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. Bioengineered. 2016;8(92):129–132.
  • Singhania RR, Patel AK, Sukumaran RK, et al. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol. 2013;127:500–507.
  • Singhania RR, Sukumaran RK, Rajasree KP, et al. Properties of a major β-glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochem. 2011;46(7):1521–1524.
  • Jonas R, Farah LF. Production and application of microbial cellulose. Polym Degrad Stab. 1998;59(1–3):101–106.
  • Trovatti E, Serafim LS, Freire CSR, et al. Gluconacetobacter sacchari: an efficient bacterial cellulose cell-factory. Carbohydr Polym. 2011;86(3):1417–1420.
  • Shigematsu T, Takamine K, Kitazato M, et al. Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng. 2005;99(4):415–422.
  • Kuo CH, Teng HY, Lee CK. Knockout of glucose dehydrogenase gene in Gluconacetobacter xylinus for bacterial cellulose production enhancement, Biotechnol. Bioprocess Eng. 2015;20(1):18–25.
  • Kuo CH, Teng HY, Lee CK. Knockout of glucose dehydrogenase gene in Gluconacetobacter xylinus for bacterial cellulose production enhancement. Biotechnol Bioprocess Eng. 2015;20(1):18–25.
  • Li Y, Tian C, Tian H, et al. Improvement of bacterial cellulose production by manipulating the metabolic pathways in which ethanol and sodium citrate involved. Appl Microbiol Biotechnol. 2012;96(6):1479–1487.
  • Chen S, Chu J, Zhuang Y, et al. Enhancement of inosine production by Bacillus subtilis through suppression of carbon overflow by sodium citrate. Biotechnol Lett. 2005;27(10):689–692.
  • Verschuren PG, Cardona TD, Nout MJR, et al. Location and limitation of cellulose production by Acetobacter xylinum established from oxygen profiles. J Biosci Bioeng. 2000;89(5):414–419.
  • De Wulf P, Joris K, Vandamme EJ. Improved cellulose formation by anAcetobacter xylinum mutant limited in (Keto)gluconate synthesis. J Chem Technol Biotechnol. 1996;67(4):376–380.
  • Valla S, Kjosbakken J. Cellulose-negative mutants of Acetobacter xylinum. Microbiology. 1982;128(7):1401–1408.
  • Schellenberger J, Palsson BØ. Use of randomized sampling for analysis of metabolic networks. J Biol Chem. 2009;284(9):5457–5461.
  • Bogino PC, Oliva MM, Sorroche FG, et al. The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci. 2013;14(8):15838–15859.
  • Kawano S, Tajima K, Kono H, et al. Effects of endogenous endo-β-1,4-glucanase on cellulose biosynthesis in Acetobacter xylinum ATCC23769, J. Biosci. Bioeng. 2002;94(3):275–281.
  • Jacek P, Dourado F, Gama M, et al. Molecular aspects of bacterial nanocellulose biosynthesis. Microbiol Biotechnol. 2019;12(4):633–649.
  • Jacek P, Szustak M, Kubiak K, et al. Scaffolds for chondrogenic cells cultivation prepared from bacterial cellulose with relaxed fibers structure Induced Genetically. Nanomaterials. 2018;8(12):1066.
  • Jacek P, Kubiak K, Ryngajłło M, et al. Modification of bacterial nanocellulose properties through mutation of motility related genes in Komagataeibacter hansenii ATCC 53582. New Biotechnol. 2019;52:60–68.
  • Fang J, Kawano S, Tajima K, et al. In Vivo curdlan/cellulose bionanocomposite synthesis by genetically modified gluconacetobacter xylinus. Biomacromolecules. 2015;16(10):3154–3160.
  • Yadav V, Paniliatis BJ, Shi H, et al. Novel In Vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Environ Microbiol. 2010;76(18):6257–6265.
  • Keshk SMAS, Cellulose B. Bacterial cellulose production and its industrial applications. J Bioprocess Biotech. 2014;4(2):150.
  • Cacicedo ML, Castro MC, Servetas I, et al. Progress in bacterial cellulose matrices for biotechnological applications. Bioresour Technol. 2016;213:172–180.
  • Shi Z, Zhang Y, Phillips GO, et al. Utilization of bacterial cellulose in food. Food Hydrocoll. 2014;35:539–545.
  • Fillat A, Martı´nez J, Valls C, et al. Bacterial cellulose for increasing barrier properties of paper products. Cellulose. 2018;25(10):6093–6105.
  • Santos SM, Carbajo JM, Quintana E, et al. Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym. 2015;116:173–181.
  • Santos SM, Carbajo JM, Go´mez N, et al. Use of bacterial cellulose in degraded paper restoration. Part I: application on model papers. J Mater Sci. 2016;51(3):1541–1552.
  • Santos SM, Carbajo JM, Go´mez N, et al. Paper reinforcing by in situ growth of bacterial cellulose. J Mater Sci. 2017;52(10):5882–5893.
  • Fu L, Zhang J, Yang G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym. 2013;92(2):1432–1442.
  • Chawla PR, Bajaj IB, Survase SA, et al. Microbial Cellulose: fermentative Production and Applications. Food Technol Biotechnol. 2009;47:107–124.
  • Shah N, Ul-Islam M, Khattak WA, et al. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym. 2013;98(2):1585–1598.
  • Numata Y, Sakata T, Furukawa H, et al. Bacterial cellulose gels with high mechanical strength. Mater Sci Eng C Mater Biol Appl. 2015;47:57–62.
  • Müller A, Ni Z, Hessler N, et al. The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci. 2013;102(2):579–592.
  • Hu W, Chen S, Yang J, et al. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydrate Polymers. 2014;101:1043–1060.
  • Thaveemas P, Chuenchom L, Kaowphong S, et al. Magnetic carbon nanofiber composite adsorbent through green in-situ conversion of bacterial cellulose for highly efficient removal of bisphenol A. Bioresour Technol. 2021;333:125184.
  • Li H, Ma H, Liu T, et al. An excellent alternative composite modifier for cathode catalysts prepared from bacterial cellulose doped with Cu and P and its utilization in microbial fuel cell. Bioresour Technol. 2019;289:121661.