1,594
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Role of Fucoxanthin towards Cadmium-induced renal impairment with the antioxidant and anti-lipid peroxide activities

, , , & ORCID Icon
Pages 7235-7247 | Received 04 Jul 2021, Accepted 24 Aug 2021, Published online: 27 Sep 2021

References

  • Donangelo CM, Kerr BT, Queirolo EI, et al. Lead exposure and indices of height and weight in Uruguayan urban school children, considering co-exposure to cadmium and arsenic, sex, iron status and dairy intake. Environ Res. 2021;195:110799.
  • Nawrot T, Plusquin M, Hogervorst J, et al. Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol. 2006;7(2):119–126.
  • Satarug S, Garrett SH, Sens MA, et al. Cadmium, environmental exposure, and health outcomes. Environ Health Perspect. 2010;118(2):182–190.
  • Satarug S, Baker JR, Urbenjapol S, et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett. 2003;137(1–2):65–83.
  • Gobe GC, Johnson DW. Distal tubular epithelial cells of the kidney: potential support for proximal tubular cell survival after renal injury. Int J Biochem Cell Biol. 2007;39(9):1551–1561.
  • Kar I, Patra AK. Tissue Bioaccumulation and Toxicopathological Effects of Cadmium and Its Dietary Amelioration in Poultry-a Review. Biol Trace Elem Res. 2021;199:3846–3868.
  • Handan BA, CFG DM, Cardoso CM, et al. Protective Effect of Grape and Apple Juices against Cadmium Intoxication in the Kidney of Rats. Drug Res (Stuttg). 2020;70(11):503–511.
  • Bharathiraja K, Babu LH, Vijayaprakash S, et al. Fucoxanthin, a marine carotenoid protects cadmium-induced oxidative renal dysfunction in rats. Biomed Preventive Nutrit. 2013;8(3):201
  • Jarup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009;238(3):201–208.
  • Xia S, Wang K, Wan L, et al. Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita. Mar Drugs. 2013;11(7):2667–2681.
  • Dembitsky VM, Maoka T. Allenic and cumulenic lipids. Prog Lipid Res. 2007;46(6):328–375.
  • Nishino H. Cancer prevention by carotenoids. Mutat Res. 1998;402(1–2):159–163.
  • Kim KN, Heo SJ, Yoon WJ, et al. Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-kappaB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur J Pharmacol. 2010;649(1–3):369–375.
  • Jeon SM, Kim HJ, Woo MN, et al. Fucoxanthin-rich seaweed extract suppresses body weight gain and improves lipid metabolism in high-fat-fed C57BL/6J mice. Biotechnol J. 2010;5(9):961–969.
  • Urikura I, Sugawara T, Hirata T. Protective effect of Fucoxanthin against UVB-induced skin photoaging in hairless mice. Biosci Biotechnol Biochem. 2011;75(4):757–760.
  • Sakai S, Sugawara T, Hirata T. Inhibitory effect of dietary carotenoids on dinitrofluorobenzene-induced contact hypersensitivity in mice. Biosci Biotechnol Biochem. 2011;75(5):1013–1015.
  • Park JD, Liu Y, Klaassen CD. Protective effect of metallothionein against the toxicity of cadmium and other metals(1). Toxicology. 2001;163(2–3):93–100.
  • Zhou J, Liao X, Li R. [Effect of shenfukang on nephropathy rats induced by adriamycin]. Zhong Yao Cai. 2001;24(2):116–120.
  • Thornton B, Basu C. Rapid and simple method of qPCR primer design. Methods Mol Biol. 2015;1275:173–179.
  • Li XQ, Li Z, Shi TT. Iron Nitride Nanopowders Prepared by High-Pressure Gas-Solid Reaction. J Nanosci Nanotechnol. 2021;21(3):1636–1640.
  • Erdogan H, Fadillioglu E, Yagmurca M, et al. Protein oxidation and lipid peroxidation after renal ischemia-reperfusion injury: protective effects of erdosteine and N-acetylcysteine. Urol Res. 2006;34(1):41–46.
  • Flameng W, Borgers M, Daenen W, et al. Ultrastructural and cytochemical correlates of myocardial protection by cardiac hypothermia in man. J Thorac Cardiovasc Surg. 1980;79(3):413–424.
  • Hudlikar RR, Sargsyan D, Li W, et al. Epigenomic, Transcriptomic, and Protective Effect of Carotenoid Fucoxanthin in High Glucose-Induced Oxidative Stress in Mes13 Kidney Mesangial Cells. Chem Res Toxicol. 2021;34:713–722.
  • Meresse S, Fodil M, Fleury F, et al. Fucoxanthin, a Marine-Derived Carotenoid from Brown Seaweeds and Microalgae: a Promising Bioactive Compound for Cancer Therapy. Int J Mol Sci. 2020;21:23.
  • Manfellotto F, Stella GR, Falciatore A, et al. Engineering the Unicellular Alga Phaeodactylum tricornutum for Enhancing Carotenoid Production. Antioxidants (Basel). 2020;9:8.
  • Rashwan HM, Mohammed HE, El-Nekeety AA, et al. Bioactive phytochemicals from Salvia officinalis attenuate cadmium-induced oxidative damage and genotoxicity in rats. Environ Sci Pollut Res Int. 2021. 10.1007/s11356-021-15407-y.
  • Taghizadeh SM, Berenjian A, Chew KW, et al. Impact of magnetic immobilization on the cell physiology of green unicellular algae Chlorella vulgaris. Bioengineered. 2020;11(1):141–153.
  • Yang H, Xing R, Liu S, et al. Effect of Fucoxanthin Administration on Thyroid Gland Injury Induced by Cadmium in Mice. Biol Trace Elem Res. 2021;199(5):1877–1884.
  • Costa GB, Simioni C, Pereira DT, et al. The brown seaweed Sargassum cymosum: changes in metabolism and cellular organization after long-term exposure to cadmium. Protoplasma. 2017;254(2):817–837.
  • Bridges CC, Zalups RK. Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol. 2005;204(3):274–308.
  • Zalups RK, Ahmad S. Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol. 2003;186(3):163–188.
  • Liu J, Qian SY, Guo Q, et al. Cadmium generates reactive oxygen- and carbon-centered radical species in rats: insights from in vivo spin-trapping studies. Free Radic Biol Med. 2008;45(4):475–481.
  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26(4):239–257.
  • Maoka T, Nishino A, Yasui H, et al. Activity of Mytiloxanthin, a Metabolite of Fucoxanthin in Shellfish and Tunicates. Mar Drugs. 2016;14:5.
  • Liu T, He W, Yan C, et al. Roles of reactive oxygen species and mitochondria in cadmium-induced injury of liver cells. Toxicol Ind Health. 2011;27(3):249–256.
  • Gobe G, Crane D. Mitochondria, reactive oxygen species and cadmium toxicity in the kidney. Toxicol Lett. 2010;198(1):49–55.
  • Jung S, Shin J, Oh J, et al. Cytotoxic and apoptotic potential of Phyllodium elegans extracts on human cancer cell lines. Bioengineered. 2019;10(1):501–512.
  • Li C, Zhang Y, Liu R, et al. Ramelteon ameliorated 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in neuronal cells in a mitochondrial-dependent pathway. Bioengineered. 2021;12(1):4868–4877.
  • Nechyporuk V, Korda M, Pentiuk L, et al. Implementation of programmed cell death in circulating neutrophils and its special characteristics in experimentally induced hyperhomocysteinemia in a setting of thyroid dysfunction. Pol Merkur Lekarski. 2020;48(288):437–442.
  • Shi Y, Tian C, Yu X, et al. Protective Effects of Smilax glabra Roxb. Against Lead-Induced Renal Oxidative Stress, Inflammation and Apoptosis in Weaning Rats and HEK-293 Cells. Front Pharmacol. 2020;11:556248.
  • Sabbisetti VS, Waikar SS, Antoine DJ, et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol. 2014;25(10):2177–2186.