3,122
Views
24
CrossRef citations to date
0
Altmetric
Research Paper

Baicalin suppresses autophagy-dependent ferroptosis in early brain injury after subarachnoid hemorrhage

, , , & ORCID Icon
Pages 7794-7804 | Received 22 Jul 2021, Accepted 28 Aug 2021, Published online: 27 Oct 2021

References

  • Chen S, Feng H, Sherchan P, et al. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol. 2014;115:64–91.
  • Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet. 2017 Feb 11;389(10069):655–666.
  • Van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007 Jan 27;369(9558):306–318.
  • Yan Z, Zou Y, Deng Y, et al. Analysis of role of rat cerebral pericytes in cerebral vasospasm after subarachnoid hemorrhage and molecular mechanism of neurovascular injury. Bioengineered. 2021 Dec;12(1):3957–3967.
  • Aydin MD, Kanat A, Yolas C, et al. Spinal subarachnoid hemorrhage induced intractable miotic pupil. a reminder of ciliospinal sympathetic center Ischemia based miosis: an experimental study. Turk Neurosurg. 2019;29(3):434–439.
  • Al-Mufti F, Amuluru K, Changa A, et al. Traumatic brain injury and intracranial hemorrhage-induced cerebral vasospasm: a systematic review. Neurosurg Focus. 2017 Nov;43(5):E14.
  • Francoeur CL, Mayer SA. Management of delayed cerebral ischemia after subarachnoid hemorrhage. Crit Care. 2016 Oct 14;20(1):277.
  • Geraghty JR, Testai FD. Delayed cerebral Ischemia after subarachnoid hemorrhage: beyond vasospasm and towards a multifactorial pathophysiology. Curr Atheroscler Rep. 2017 Oct 23;19(12):50.
  • Li K, Barras CD, Chandra RV, et al. A review of the management of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. World Neurosurg. 2019 Jun;126:513–527.
  • Al-Mufti F, Amuluru K, Smith B, et al. Emerging markers of early brain injury and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. World Neurosurg. 2017 Nov;107:148–159.
  • Rass V, Helbok R. Early brain injury after poor-grade subarachnoid hemorrhage. Curr Neurol Neurosci Rep. 2019 Aug 29;19(10):78.
  • Lu LQ, Tian J, Luo XJ, et al. Targeting the pathways of regulated necrosis: a potential strategy for alleviation of cardio-cerebrovascular injury. Cell Mol Life Sci. 2021 Jan;78(1):63–78.
  • Hartman ML. Non-Apoptotic cell death signaling pathways in Melanoma. Int J Mol Sci. 2020 Apr 23;21(8):2980.
  • Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 2020 Nov;66:89–100.
  • Proneth B, Conrad M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ. 2019 Jan;26(1):14–24.
  • Tang D, Kang R, Berghe TV, et al. The molecular machinery of regulated cell death. Cell Res. 2019 May;29(5):347–364.
  • Li Y, Liu Y, Wu P, et al. Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation. Cell Mol Neurobiol. 2021 Mar;41(2):263–278.
  • Gao SQ, Liu JQ, Han YL, et al. Neuroprotective role of glutathione peroxidase 4 in experimental subarachnoid hemorrhage models. Life Sci. 2020 Sep 15;257:118050.
  • Tu XK, Yang WZ, Shi SS, et al. Neuroprotective effect of baicalin in a rat model of permanent focal cerebral ischemia. Neurochem Res. 2009 Sep;34(9):1626–1634.
  • Chang CP, Huang WT, Cheng BC, et al. The flavonoid baicalin protects against cerebrovascular dysfunction and brain inflammation in experimental heatstroke. Neuropharmacology. 2007 Mar;52(3):1024–1033.
  • Wan JY, Gong X, Zhang L, et al. Protective effect of baicalin against lipopolysaccharide/D-galactosamine-induced liver injury in mice by up-regulation of heme oxygenase-1. Eur J Pharmacol. 2008 Jun 10;587(1–3):302–308.
  • Tsai P-L, Tsai T-H. Pharmacokinetics of baicalin in rats and its interactions with cyclosporin A, quinidine and SKF-525A: a microdialysis study. Planta Med. 2004 Nov;70(11):1069–1074.
  • Srinivas NR. Baicalin, an emerging multi-therapeutic agent: pharmacodynamics, pharmacokinetics, and considerations from drug development perspectives. Xenobiotica. 2010 May;40(5):357–367.
  • Fang J, Zhu Y, Wang H, et al. Baicalin protects mice brain from apoptosis in traumatic brain injury model through activation of autophagy. Front Neurosci. 2018;12:1006.
  • Nam JE, Jo SY, Ahn CW, et al. Baicalin attenuates fibrogenic process in human renal proximal tubular cells (HK-2) exposed to diabetic milieu. Life Sci. 2020 Aug 1;254:117742.
  • Liu X, Wang S, Zhao G. Baicalin relieves lipopolysaccharide-evoked inflammatory injury through regulation of miR-21 in H9c2 cells. Phytother Res. 2020 May;34(5):1134–1141.
  • Huang X, Wu P, Huang F, et al. Baicalin attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A(2A) receptor-induced SDF-1/CXCR4/PI3K/AKT signaling. J Biomed Sci. 2017 Aug 3;24(1):52.
  • Shi X, Fu Y, Zhang S, et al. Baicalin attenuates subarachnoid hemorrhagic brain injury by modulating blood-brain barrier disruption, inflammation, and oxidative damage in mice. Oxid Med Cell Longev. 2017;2017:1401790.
  • Duan L, Zhang Y, Yang Y, et al. Baicalin inhibits ferroptosis in intracerebral hemorrhage. Front Pharmacol. 2021;12:629379.
  • Zhang HB, Tu XK, Song SW, et al. Baicalin reduces early brain injury after subarachnoid hemorrhage in rats. Chin J Integr Med. 2020 Jul;26(7):510–518.
  • Guo J, Xu B, Han Q, et al. Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res Treat. 2018 Apr;50(2):445–460.
  • Liang Z, Chi YJ, Lin GQ, et al. LncRNA MEG3 participates in neuronal cell injury induced by subarachnoid hemorrhage via inhibiting the Pi3k/Akt pathway. Eur Rev Med Pharmacol Sci. 2018 May;22(9):2824–2831.
  • Sugawara T, Ayer R, Jadhav V, et al. A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods. 2008 Jan 30;167(2):327–334.
  • Saini N, Akhtar A, Chauhan M, et al. Protective effect of Indole-3-carbinol, an NF-κB inhibitor in experimental paradigm of Parkinson’s disease: in silico and in vivo studies. Brain Behav Immun. 2020 Nov;90:108–137.
  • Xi G, Hua Y, Bhasin RR, et al. Mechanisms of edema formation after intracerebral hemorrhage: effects of extravasated red blood cells on blood flow and blood-brain barrier integrity. Stroke. 2001 Dec 1;32(12):2932–2938.
  • Kenny EM, Fidan E, Yang Q, et al. Ferroptosis Contributes to neuronal death and functional outcome after traumatic brain injury. Crit Care Med. 2019 Mar;47(3):410–418.
  • Xie BS, Wang YQ, Lin Y, et al. Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther. 2019 Apr;25(4):465–475.
  • Li W, Li W, Leng Y, et al. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol. 2020 Feb;39(2):210–225.
  • Li Y, Feng D, Wang Z, et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 2019 Nov;26(11):2284–2299.
  • Su L, Jiang X, Yang C, et al. Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury. J Biol Chem. 2019 Dec 13;294(50):19395–19404.
  • Chen B, Chen Z, Liu M, et al. Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects. Brain Res Bull. 2019 Nov;153:122–132.
  • Zhang Z, Wu Y, Yuan S, et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res. 2018 Dec 15;1701:112–125.
  • Qu J, Zhao H, Li Q, et al. MST1 suppression reduces early brain injury by inhibiting the NF-κB/MMP-9 pathway after subarachnoid hemorrhage in mice. Behav Neurol. 2018;2018:6470957.
  • Zhou B, Liu J, Kang R, et al. Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 2020 Nov;66:89–100
  • Liang H, Yoo SE, Na R, et al. Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions. J Biol Chem. 2009 Nov 6;284(45):30836–30844.
  • Yang WS, SriRamaratnam R, Welsch ME, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014 Jan 16;156(1–2):317–331.