3,590
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Microbial engineering for the production of isobutanol: current status and future directions

, , , &
Pages 12308-12321 | Received 10 Jul 2021, Accepted 03 Sep 2021, Published online: 19 Dec 2021

References

  • Lee WH, Seo SO, Bae YH, et al. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes. Bioprocess Biosyst Eng. 2012;35:1467–1475.
  • Sindhu R, Binod P, Pandey A, et al. Biofuel Production From Biomass: toward Sustainable Development. Curr Dev Biotechnol Bioeng Waste Treat Process Energy Gener. 2019;10:79–92.
  • Uyttebroek M, Van Hecke W, Vanbroekhoven K. Sustainability metrics of 1-butanol. Catal Today. 2015;239:7–10.
  • Carlini C, Di Girolamo M, Macinai A, et al. Synthesis of isobutanol by the Guerbet condensation of methanol with n-propanol in the presence of heterogeneous and homogeneous palladium-based catalytic systems. J Mol Catal A Chem. 2003;204–205:721–728.
  • Bauer F, Hulteberg C. Isobutanol from glycerine - A techno-economic evaluation of a new biofuel production process. Appl Energy. 2014;122:261–268.
  • Avalos JL, Fink GR, Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol. 2013;31:335–341.
  • Brat D, Weber C, Lorenzen W, et al. Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels. 2012;5:1–16.
  • Matsuda F, Kondo T, Ida K, et al. Construction of an artificial pathway for isobutanol biosynthesis in the cytosol of saccharomyces cerevisiae. Biosci Biotechnol Biochem. 2012;76:2139–2141.
  • Ida K, Ishii J, Matsuda F, et al. Eliminating the isoleucine biosynthetic pathway to reduce competitive carbon outflow during isobutanol production by Saccharomyces cerevisiae. Microb Cell Fact. 2015;14:1–9.
  • Matsuda F, Ishii J, Kondo T, et al. Increased isobutanol production in Saccharomyces cerevisiae by eliminating competing pathways and resolving cofactor imbalance. Microb Cell Fact. 2013;12:1–11.
  • Blombach B, Eikmanns BJ. Current knowledge on isobutanol production with Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. Bioeng Bugs. 2011;2:346–350.
  • Claassens NJ, Burgener S, Vögeli B, et al. A critical comparison of cellular and cell-free bioproduction systems. Curr Opin Biotechnol. 2019;60:221–229.
  • Swiegers JH, Bartowsky EJ, Henschke PA, et al. Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res. 2005;11:139–173.
  • Romano P, Suzzi G, Comi G, et al. Higher alcohol and acetic acid production by apiculate wine yeasts. J Appl Bacteriol. 1992;73:126–130.
  • Longo E, Velázquez JB, Sieiro C, et al. Production of higher alcohols, ethyl acetate, acetaldehyde and other compounds by 14 Saccharomyces cerevisiae wine strains isolated from the same region (Salnés, N W. Spain). World J Microbiol Biotechnol. 1992;8:539–541.
  • Ramli NA, Rahman RA, Ngadi N, et al. Optimisation of fermentation conditions for isobutanol production by saccharomyces cerevisiae using response surface methodology. Chem Eng Trans. 2017;56:301–306.
  • Nor AR, Roshanida AR. Isobutanol Production and Alcohol Tolerance by Yeast Wild Strain. Adv Mater Res. 2015;1113:334–339.
  • Siripong W, Wolf P, Kusumoputri TP, et al. Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate. Biotechnol Biofuels. 2018;11. DOI:10.1186/s13068-017-1003-x.
  • Jiang J. Identification of flavour volatile compounds produced by Kluyveromyces lactis. Biotechnology Techniques. 1993;7:863–866.
  • Kurylenko OO, Ruchala J, Dmytruk KV, et al. Multinuclear Yeast Magnusiomyces (Dipodascus, Endomyces) magnusii is a Promising Isobutanol Producer. Biotechnol J. 2020;15:1–8.
  • Priyadharshini S, Archana M, Angeline Kiruba D, et al. Production of isobutanol from Lactococcus lactis using valine catabolic degradation pathway. Ijetsr. 2000;2:72–81.
  • Gu J, Zhou J, Zhang Z, et al. Isobutanol and 2-ketoisovalerate production by Klebsiella pneumoniae via a native pathway. Metab Eng. 2017;43:71–84.
  • Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451:86–89.
  • Weckbecker A, Hummel W. Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase. Biotechnol Lett. 2004;26:1739–1744.
  • Bastian S, Liu X, Meyerowitz JT, et al. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng. 2011;13:345–352.
  • Shi A, Zhu X, Lu J, et al. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng. 2013;16:1–10.
  • Deb SS, Reshamwala SMS, Lali AM. Activation of alternative metabolic pathways diverts carbon flux away from isobutanol formation in an engineered Escherichia coli strain. Biotechnol Lett. 2019;41:823–836.
  • Noda S, Mori Y, Oyama S, et al. Reconstruction of metabolic pathway for isobutanol production in Escherichia coli. Microb Cell Fact. 2019;18:124.
  • Liang S, Chen H, Liu J, et al. Rational design of a synthetic Entner–Doudoroff pathway for enhancing glucose transformation to isobutanol in Escherichia coli. J Ind Microbiol Biotechnol. 2018;45:187–199.
  • Baez A, Cho KM, Liao JC. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl Microbiol Biotechnol. 2011;90:1681–1690.
  • Song HS, Seo HM, Jeon JM, et al. Enhanced isobutanol production from acetate by combinatorial overexpression of acetyl-CoA synthetase and anaplerotic enzymes in engineered Escherichia coli. Biotechnol Bioeng. 2018;115:1971–1978.
  • Desai SH, Rabinovitch-Deere CA, Fan Z, et al. Isobutanol production from cellobionic acid in Escherichia coli. Microb Cell Fact. 2015;14:1–10.
  • Smith KM, Cho KM, Liao JC. Engineering Corynebacterium glutamicum for isobutanol production. Appl Microbiol Biotechnol. 2010;87:1045–1055.
  • Blombach B, Riester T, Wieschalka S, et al. Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol. 2011;77:3300–3310.
  • Hasegawa S, Jojima T, Suda M, et al. Isobutanol production in Corynebacterium glutamicum: suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner–Doudoroff pathway. Metab Eng. 2020;59:24–35.
  • Yamamoto S, Suda M, Niimi S, et al. Strain optimization for efficient isobutanol production using corynebacterium glutamicum under oxygen deprivation. Biotechnol Bioeng. 2013;110:2938–2948.
  • Lange J, Müller F, Takors R, et al. Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum. Microb Biotechnol. 2018;11:257–263.
  • Jia X, Li S, Xie S, et al. Engineering a metabolic pathway for isobutanol biosynthesis in Bacillus subtilis. Appl Biochem Biotechnol. 2012;168:1–9.
  • Li S, Wen J, Jia X. Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Appl Microbiol Biotechnol. 2011;91:577–589.
  • Park SH, Kim S, Hahn JS. Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol. Appl Microbiol Biotechnol. 2014;98:9139–9147.
  • Brat D, Boles E. Isobutanol production from d-xylose by recombinant Saccharomyces cerevisiae. FEMS Yeast Res. 2013;13:241–244.
  • Lane S, Zhang Y, Yun EJ, et al. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae. Biotechnol Bioeng. 2020;117:372–381.
  • Zhang A, Su Y, Li J, et al. Improving isobutanol productivity through adaptive laboratory evolution in Saccharomyces cerevisiae. 2019;1–37. DOI:10.21203/rs.2.19485/v1.
  • Morita K, Nomura Y, Ishii J, et al. Heterologous expression of bacterial phosphoenol pyruvate carboxylase and Entner–Doudoroff pathway in Saccharomyces cerevisiae for improvement of isobutanol production. J Biosci Bioeng. 2017;124:263–270.
  • Park SH, Kim S, Hahn JS. Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier. Appl Microbiol Biotechnol. 2016;100:7591–7598.
  • Grimaldi J, Collins CH, Belfort G. Towards cell-free isobutanol production: development of a novel immobilized enzyme system. Biotechnol Prog. 2016;32:66–73.
  • Sherkhanov S, Korman TP, Chan S, et al. Isobutanol production freed from biological limits using synthetic biochemistry. Nat Commun. 2020;11:1–10.
  • Weber C, Farwick A, Benisch F, et al. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Appl Microbiol Biotechnol. 2010;87:1303–1315.
  • Bricker DK, Taylor EB, Schell JC, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 2012;336:96–100.
  • Hazelwood LA, Daran JM, AJA VM, et al. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol. 2008;74:2259–2266.
  • Chen X, Nielsen KF, Borodina I, et al. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnol Biofuels. 2011;4:21.
  • Marulanda VA, Gutierrez CDB, Alzate CAC, Thermochemical, biological, biochemical, and hybrid conversion methods of bio-derived molecules into renewable fuels. Adv. Bioprocess. Altern. Fuels, Biobased Chem. Bioprod. 2019; Vol. 10. 59–81. Technol. Approaches Scale-Up Commer., Elsevier 1016/B978–0–12–817941–3.00004–8
  • Lin PP, Mi L, Morioka AH, et al. Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum. Metab Eng. 2015;31:44–52.
  • Fu C, Li Z, Jia C, et al. Recent advances on bio-based isobutanol separation. Energy Convers Manag X. 2020;10:100059.
  • Yi C, Zhang Y, Xie S, et al. Salting-out extraction of bio-based isobutanol from an aqueous solution. J Chem Technol Biotechnol. 2018;93:372–384.
  • US8101808B2, Recovery of higher alcohols from dilute aqueous solutions Google Patents n.d. https://patents.google.com/patent/US8101808B2/en (accessed 2021 Jun 30).
  • Us CA, Urano J, Us CO, et al. (12) United States Patent (10) Patent No 2011;2.
  • Donaldson GK, Eliot AC, Flint D, et al. Method for the production of isobutanol by recombinant yeast. 2016;2.
  • Nelson MJ, Us DE, Bramucci MG, et al. (12) United States Patent. vol. 2. 2016.
  • Anthony LC, Us PA, Dauner M, et al. (12) Patent Application Publication (10) Pub. No.: US 2010/0120105 A1 2010;1.
  • Page L (12) United States Patent (45) Date of Patent : 2013;2.
  • Acedos MG, de la Torre I, Santos VE, et al. Modulating redox metabolism to improve isobutanol production in Shimwellia blattae. Biotechnol Biofuels. 2021;14:1–11.
  • Education IT. 2017, Formate and nitrate utilization in Enterobacter aerogenes for semi-anaerobic production of isobutanol 36–41.
  • Kondo T, Tezuka H, Ishii J, et al. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. J Biotechnol. 2012;159:32–37.