3,785
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Advances in biomaterial production from animal derived waste

ORCID Icon, , , , , , & show all
Pages 8247-8258 | Received 18 Jul 2021, Accepted 14 Sep 2021, Published online: 23 Nov 2021

References

  • Food and Agricultural Organization (FAO). 2019. [cited 2021 Jul 15]. http://www.fao.org/faostat/en/#data/
  • Reshmy R, Philip E, Madhavan A, et al. Advanced biomaterials for sustainable applications in the food industry: updates and challenges. Environ Pollut. 2021;283:117071.
  • Sharma P, Gaur VK, Kim S-H, et al. Microbial strategies for bio-transforming food waste into resources. Bioresour Technol. 2020;299. doi:10.1016/j.biortech.2019.122580
  • Zamri, M. F. M. A., Bahru, R., Amin, R., Khan, M. U. A., Abd Razak, S. I., Hassan, S. A., … & Nayan, N. H. M. Waste to health: a review of waste derived materials for tissue engineering. J. Clean. Prod. 2021:125792.
  • Li J, Liu Y, Gao Y, et al. Preparation and properties of calcium citrate nanosheets for bone graft substitute. Bioengineered. 2016;7(5):376–381.
  • He M, Zhang B, Dou Y, et al. Fabrication and characterization of electrospun feather keratin/poly (vinyl alcohol) composite nanofibers. RSC Adv. 2017;7(16):9854–9861.
  • Fagbemi OD, Sithole B, Tesfaye T. Optimization of keratin protein extraction from waste chicken feathers using hybrid pre-treatment techniques. Sustain Chem Pharm. 2020;17:100267.
  • Oluba OM, Obi CF, Akpor OB, et al. Fabrication and characterization of keratin starch biocomposite film from chicken feather waste and ginger starch. Sci Rep. 2021;11(1):1–11.
  • Yin X-C, Li F-Y, He Y-F, et al. Study on effective extraction of chicken feather keratins and their films for controlling drug release. Biomater Sci. 2013;1(5):528–536.
  • Shanmugasundaram OL, Ahmed KSZ, Sujatha K, et al. Fabrication and characterization of chicken feather keratin/polysaccharides blended polymer coated nonwoven dressing materials for wound healing applications. Mater Sci Eng C. 2018;92:26–33.
  • Sun K, Guo J, He Y, et al. Fabrication of dual-sensitive keratin-based polymer hydrogels and their controllable release behaviors. J Biomater Sci Polym Ed. 2016;27(18):1926–1940.
  • Nayak KK, Gupta P. In vitro biocompatibility study of keratin/agar scaffold for tissue engineering. Int J Biol Macromol. 2015;81:1–10.
  • Bansal G, Singh VK, Patil P, et al. Water absorption and thickness swelling characterization of chicken feather fiber and extracted fish residue powder filled epoxy based hybrid biocomposite. Int J Waste Res. 2016;6(3):1–6.
  • Kumar A, Bansal G, Singh VK. Characterization of mechanical strength of epoxy hybrid composite reinforced with chicken feather fiber and residue powder extracted from rohu fish scale. Int J Eng Res Technol. 2019;8:181–2278.
  • Asra DY, Sari YW, Dahlan K. Effect of microwave irradiation on the synthesis of carbonated hydroxyapatite (CHA) from chicken eggshell. In: IOP Conference Series: Earth and Environmental Science; IOP Publishing, Bogor, Indonesia; 2018. p. 12016.
  • McDougal T 2020. Eggs: global egg production continues to rise. Poultry World. [cited 2021 Sep 5]. https://www.poultryworld.net/Eggs/Articles/2020/6/Global-egg-production-continues-to-rise-604164E/
  • Mensah RA, Bin JS, Kim H, et al. The eggshell membrane: a potential biomaterial for corneal wound healing. J Biomater Appl. 2021. doi 10.1177/08853282211024040.
  • Jena DK, Sahoo PK. New strategies for the construction of eggshell powder reinforced starch based fire hazard suppression biomaterials with tailorable thermal, mechanical and oxygen barrier properties. Int J Biol Macromol. 2019;140:496–504.
  • Gronlien KG, Pedersen ME, Sanden KW, et al. Collagen from Turkey (Meleagris gallopavo) tendon: a promising sustainable biomaterial for pharmaceutical use. Sustain Chem Pharm. 2019;13:100166.
  • Rahmitasari F, Rahayu RP, Munadziroh E. The Chitosan-chicken Shank Collagen used as Scaffold through lymphocyte cell proliferation in bone regeneration process. Acta Med Philipp. 2020. doi:10.47895/amp.vi0.1828
  • Miculescu F, Maidaniuc A, Miculescu M, et al. Synthesis and characterization of jellified composites from bovine bone-derived hydroxyapatite and starch as precursors for robocasting. ACS Omega. 2018;3(1):1338–1349.
  • Odusote JK, Danyuo Y, Baruwa AD, et al. Synthesis and characterization of hydroxyapatite from bovine bone for production of dental implants. J Appl Biomater Funct Mater. 2019;17(2):2280800019836829.
  • Puri S, Sharma S, Kumari A, et al. Extraction of lignocellulosic constituents from cow dung: preparation and characterisation of nanocellulose. Biomass Convers Bioref. 2020;1–10. doi:10.1007/s13399-020-01119-9
  • Khandan A, Bonakdarchian M, Bonakdarchian M. Mechanochemical synthesis evaluation of nanocrystalline bone-derived bioceramic powder using for bone tissue engineering. Dent Hypotheses. 2014;5(4):155.
  • Nirmala R, Sheikh FA, Kanjwal MA, et al. Synthesis and characterization of bovine femur bone hydroxyapatite containing silver nanoparticles for the biomedical applications. J Nanopart Res. 2011;13(5):1917–1927.
  • Hilmi I, Rinastiti M, Herliansyah MK. Synthesis of hydroxyapatite from local bovine bones for biomedical application. In: 2011 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, Bandung, Indonesia; IEEE; 2011. p. 409–411.
  • Rodrigues CVM, Serricella P, Linhares ABR, et al. Characterization of a bovine collagen–hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials. 2003;24(27):4987–4997.
  • Muthukumar T, Sreekumar G, Sastry TP, et al. Collagen as a potential biomaterial in biomedical applications. Rev Adv Mater Sci. 2018;53(1):29–39.
  • Cevasco M, Itani KM. Ventral hernia repair with synthetic, composite, and biologic mesh: characteristics, indications, and infection profile. Surg Infect (Larchmt). 2012;13(4):209–215.
  • Herndon D. Total burn care. 3rd ed. Vol. 1, Saunder Elsevier, Michigan, USA; 2007.
  • Siddiqui RF, Abraham JR, Butany J. Bioprosthetic heart valves: modes of failure. Histopathology. 2009;55(2):135–144.
  • Fratzl P Bone material quality and Osteoporosis research. In: Research in the Department of Biomaterials, Biomaterials, Max Planck Institute of Colloids and Interfaces, Biannual Report (2005-2006), Fratzl P, Ed., Postdam, Germany, 2006.
  • Ratner BD, Hoffmann AS, Schoen FJ, et al. Biomaterials science: an introduction to materials in medicine. 2nd ed. London (UK): Elsevier Academic Press; 2004.
  • Hench LL, Best S. Ceramics, glasses and glassceramics. In: Ratner BD, Hoffmann AS, Schoen FJ, et al, editors. Biomaterials science: an introduction to materials in medicine. London (UK): Elsevier Academic Press; 2004, pp. 289-305.
  • Stefanini M, Bianchelli D, Sangiorgi M. Porcine-derived acellular dermal collagen matrix and enamel matrix derivative for the treatment of infrabony defect in the esthetic area. Plast Aesthetic Res. 2021;8: 15.
  • Orsini G, Scarano A, Piattelli M, et al. Histologic and ultrastructural analysis of regenerated bone in maxillary sinus augmentation using a porcine bone–derived biomaterial. J Periodontol. 2006;77(12):1984–1990.
  • Marçal H, Ahmed T, Badylak SF, et al. A comprehensive protein expression profile of extracellular matrix biomaterial derived from porcine urinary bladder. Regen Med. 2012;7(2):159–166.
  • Perrotti V, Nicholls BM. Resorption pattern of a porcine-derived bone substitute. J Osseointegrat. 2009;1(1):22–28.
  • Mora-Navarro C, Badileanu A, Gracioso Martins AM, et al. Porcine vocal fold lamina propria-derived biomaterials modulate TGF-β1-mediated fibroblast activation in vitro. ACS Biomater Sci Eng. 2020;6(3):1690–1703.
  • Balázsi C, Wéber F, Kövér Z, et al. Preparation of calcium–phosphate bioceramics from natural resources. J Eur Ceram Soc. 2007;27(2–3):1601–1606.
  • Chattopadhyay P, Pal S, Wahi AK, et al. Synthesis of crystalline hydroxyapetite from coral (Gergonacea sp) and cytotoxicity evaluation. Trend Biomater Artific Organs. 2007;20(2):139–142.
  • Akyurt N, Yetmez M, Karacayli U, et al. A new natural biomaterial: sheep dentine derived hydroxyapatite. In: Key engineering materials. Vol. 493. Trans Tech Publications Ltd., Switzerland; 2012. p. 281–286.
  • Rocha JHG, Lemos AF, Agathopoulos S, et al. Scaffolds for bone restoration from cuttlefish. Bone. 2005;37:850–857.
  • Lemos AF, Rocha JHG, Quaresma SSF, et al. Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J Eur Ceram Soc. 2006;26(16):3639–3646.
  • Banerjee I, Mishra D, Das T, et al. Caprine (Goat) collagen: a potential biomaterial for skin tissue engineering. J Biomater Sci Polym Ed. 2012;23(1–4):355–373.
  • Kumar SL, Anandhavelu S, Sivaraman J, et al. Modified extraction and characterization of keratin from Indian goat hoof: a biocompatible biomaterial for tissue regenerative applications. Integr Ferroelectr. 2017;184(1):41–49.
  • Rai AK, General T, Bhaskar N, et al. Utilization of tannery fleshings: optimization of conditions for fermenting delimed tannery fleshings using Enterococcus faecium HAB01 by response surface methodology. Bioresour Technol. 2010;101(6):1885–1891.
  • Balakrishnan B, Prasad B, Rai AK, et al. In vitro antioxidant and antibacterial properties of hydrolysed proteins of delimed tannery fleshings: comparison of acid hydrolysis and fermentation methods. Biodegradation. 2011;22(2):287–295.
  • Romanelli MG, Povolo S, Favaro L, et al. Engineering Delftia acidovorans DSM39 to produce polyhydroxyalkanoates from slaughterhouse waste. Int J Biol Macromol. 2014;71:21–27.
  • Szotkowski M, Byrtusova D, Haronikova A, et al. Study of metabolic adaptation of red yeasts to waste animal fat substrate. Microorganisms. 2019;7(11):578.
  • Ndiaye M, Arhaliass A, Legrand J, et al. Reuse of waste animal fat in biodiesel: biorefining heavily-degraded contaminant-rich waste animal fat and formulation as diesel fuel additive. Renewable Energy. 2020;145:1073–1079.
  • Sarkar B, Chakrabarti PP, Vijaykumar A, et al. Wastewater treatment in dairy industries — possibility of reuse. Desalination. 2006;195(1–3):141–152.
  • Bosco F, Chiampo F. Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge: production of bioplastics using dairy residues. J Biosci Bioeng. 2010;109(4):418–421.
  • Mehta V, Patel E, Vaghela K, et al. Production of biopolymer from dairy waste: an approach to alternate synthetic plastic. Int J Res Biosci. 2017;6(4):1–8.
  • Mohapatra S, Sarkar B, Samantaray DP, et al. Bioconversion of fish solid waste into PHB using Bacillus subtilis based submerged fermentation process. Environ Technol. 2017;38(24):3201–3208.
  • McGauran T, Dunne N, Smyth BM, et al. Feasibility of the use of poultry waste as polymer additives and implications for energy, cost and carbon. J Clean Prod. 2021;291:125948.
  • Wankhade V. Animal-derived biopolymers in food and biomedical technology. In: Biopolymer-Based formulations. Netherlands, Elsevier; 2020. p. 139–152.
  • Zhang Y, Olsen K, Grossi A, et al. Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chem. 2013;141(3):2343–2354.
  • Bhat ZF, Kumar S, Bhat HF. Bioactive peptides of animal origin: a review. J Food Sci Technol. 2015;52(9):5377–5392.
  • Fu Y, Young JF, Løkke MM, et al. Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. J Funct Foods. 2016;24:196–206.
  • Min SG, Jo YJ, Park SH. Potential application of static hydrothermal processing to produce the protein hydrolysates from porcine skin by-products. LWT-Food Sci Technol. 2017;83:18–25.
  • Saiga AI, Iwai K, Hayakawa T, et al. Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. J Agric Food Chem. 2008;56(20):9586–9591.
  • Dhakal D, Koomsap P, Lamichhane A, et al. Optimization of collagen extraction from chicken feet by papain hydrolysis and synthesis of chicken feet collagen based biopolymeric fibres. Food Biosci. 2018;23:23–30.
  • Londoño-Restrepo SM, Jeronimo-Cruz R, Rubio-Rosas E, et al. The effect of cyclic heat treatment on the physicochemical properties of bio hydroxyapatite from bovine bone. J Mater Sci. 2018;29(5):1–15.
  • Malla KP, Regmi S, Nepal A, et al. Extraction and characterization of novel natural hydroxyapatite bioceramic by thermal decomposition of waste ostrich bone. Int J Biomater. 2020;2020.
  • Lee SJ, Oh SH. Fabrication of calcium phosphate bioceramics by using eggshell and phosphoric acid. Mater Lett. 2003;57(29):4570–4574.