2,357
Views
9
CrossRef citations to date
0
Altmetric
Research paper

Solid lipid nanoparticle delivery of rhynchophylline enhanced the efficiency of allergic asthma treatment via the upregulation of suppressor of cytokine signaling 1 by repressing the p38 signaling pathway

, , , &
Pages 8635-8649 | Received 26 Jul 2021, Accepted 29 Sep 2021, Published online: 21 Oct 2021

References

  • Kim DE, Lee Y, Kim M, et al. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma. Biomaterials. 2017;140:37–44.
  • Pakkasela J, Ilmarinen P, Honkamäki J, et al. Age-specific incidence of allergic and non-allergic asthma. BMC Pulm Med. 2020;20(1):9.
  • King-Biggs MB. Asthma. Ann Intern Med. 2019;171(7):ITC49–ITC64.
  • Ramsahai JM, Hansbro PM, Wark PAB. Mechanisms and management of asthma exacerbations. Am J Respir Crit Care Med. 2019;199(4):423–432.
  • Boonpiyathad T, Sözener ZC, Satitsuksanoa P, et al. Immunologic mechanisms in asthma. Semin Immunol. 2019;46:101333.
  • Kleniewska P, Pawliczak R. The participation of oxidative stress in the pathogenesis of bronchial asthma. Biomed Pharmacother. 2017;94:100–108.
  • Pourmehdi A, Sakhaei Z, Alirezaei M, et al. Betaine effects against asthma-induced oxidative stress in the liver and kidney of mice. Mol Biol Rep. 2020;47(8):5729–5735.
  • Ito JT, Lourenço JD, Righetti RF, et al. Extracellular matrix component remodeling in respiratory diseases: what has been found in clinical and experimental studies? Cells. 2019;8(4):342.
  • Kardas G, Kuna P, Panek M. Biological therapies of severe asthma and their possible effects on airway remodeling. Front Immunol. 2020;11:1134.
  • Heffler E, Madeira LNG, Ferrando M, et al. Inhaled corticosteroids safety and adverse effects in patients with asthma. J Allergy Clin Immunol Pract. 2018;6(3):776–781.
  • Allen DB, Bielory L, Derendorf H, et al. Inhaled corticosteroids: past lessons and future issues. J Allergy Clin Immunol. 2003;112(3):S1–40.
  • Zhang J-G, Geng C-A, Huang X-Y, et al. Chemical and biological comparison of different sections of Uncaria rhynchophylla (Gou-Teng). Eur J Mass Spectrom (Chichester). 2017;23(1):11–21.
  • Li Y, Yang W, Zhu Q, et al. Protective effects on vascular endothelial cell in N’-nitro-L-arginine (L-NNA)-induced hypertensive rats from the combination of effective components of Uncaria rhynchophylla and Semen Raphani. Biosci Trends. 2015;9(4):237–244.
  • Wu L-Z, Xiao X-M. Evaluation of the effects of Uncaria rhynchophylla alkaloid extract on LPS-induced preeclampsia symptoms and inflammation in a pregnant rat model. Braz J Med Biol Res. 2019;52(6):e8273.
  • Loh YC, Ch’ng YS, Tan CS, et al. Mechanisms of action of Uncaria rhynchophylla ethanolic extract for its vasodilatory effects. J Med Food. 2017;20(9):895–911.
  • Li H, Bi Q, Cui H, et al. Suppression of autophagy through JAK2/STAT3 contributes to the therapeutic action of rhynchophylline on asthma. BMC Complement Med Ther. 2021;21(1):21.
  • Wang M, Li H, Zhao Y, et al. Rhynchophylline attenuates allergic bronchial asthma by inhibiting transforming growth factor-β1-mediated Smad and mitogen-activated protein kinase signaling transductions and. Exp Ther Med. 2019;17(1):251–259.
  • Xu R, Wang J, Xu J, et al. Rhynchophylline loaded-mPEG-PLGA nanoparticles coated with Tween-80 for preliminary study in Alzheimer’s disease. Int J Nanomedicine. 2020;151149–151160.
  • Paliwal R, Paliwal SR, Kenwat R, et al. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin Ther Pat. 2020;30(3):179–194.
  • Wang W, Zhu R, Xie Q, et al. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int J Nanomedicine. 2012;73:667–677.
  • Castellani S, Trapani A, Spagnoletta A, et al. Nanoparticle delivery of grape seed-derived proanthocyanidins to airway epithelial cells dampens oxidative stress and inflammation. J Transl Med. 2018;16(1):140.
  • Valdes SA, Alzhrani RF, Rodriguez A, et al. A solid lipid nanoparticle formulation of 4-(N)-docosahexaenoyl 2ʹ, 2ʹ-difluorodeoxycytidine with increased solubility, stability, and antitumor activity. Int J Pharm. 2019;570:118609.
  • Parveen R, Ahmad FJ, Iqbal Z, et al. Solid lipid nanoparticles of anticancer drug andrographolide: formulation, in vitro and in vivo studies. Drug Dev Ind Pharm. 2014;40(9):1206–1212.
  • Zhang ZJ, Osmałek T, Michniak-Kohn B. Deformable liposomal hydrogel for dermal and transdermal delivery of meloxicam. Int J Nanomedicine. 2020;159:319–335.
  • Li W, Hu X, Chen J, et al. N-(9-Fluorenylmethoxycarbonyl)-L-Phenylalanine/nano-hydroxyapatite hybrid supramolecular hydrogels as drug delivery vehicles with antibacterial property and cytocompatibility. J Mater Sci Mater Med. 2020;31(8):73.
  • Kobryń J, Zięba T, Sowa SK, et al. Influence of acetylated annealed starch on the release of β-escin from the anionic and non-ionic hydrophilic gels. Pharmaceutics. 2020;12(1):84.
  • Omlor AJ, Le DD, Schlicker J, et al. Local effects on airway inflammation and systemic uptake of 5 nm PEGylated and citrated gold nanoparticles in asthmatic mice. Small. 2017;13(10):1603070.
  • Luo X-Q, Zhong J-W, Qiu S-Y, et al. A20-OVA nanoparticles inhibit allergic asthma in a murine model. Inflammation. 2020;43(3):953–961.
  • Jaffer OA, Carter AB, Sanders PN, et al. Mitochondrial-targeted antioxidant therapy decreases transforming growth factor-β-mediated collagen production in a murine asthma model. Am J Respir Cell Mol Biol. 2015;52(1):106–115.
  • Meng L, Li L, Lu S, et al. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Mol Immunol. 2018;94:7-17.
  • Koltsida O, Karamnov S, Pyrillou K, et al. Toll-like receptor 7 stimulates production of specialized pro-resolving lipid mediators and promotes resolution of airway inflammation. EMBO Mol Med. 2013;5(5):762–775.
  • Yamagata S, Tomita K, Sato R, et al. Interleukin-18-deficient mice exhibit diminished chronic inflammation and airway remodelling in ovalbumin-induced asthma model. Clin Exp Immunol. 2008;154(3):295–304.
  • Bao Z, Guan S, Cheng C, et al. A novel antiinflammatory role for andrographolide in asthma via inhibition of the nuclear factor-kappaB pathway. Am J Respir Crit Care Med. 2009;179(8):657–665.
  • Papadopoulou V, Kosmidis K, Vlachou M, et al. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006;309(1–2):44–50.
  • Ray A, Kolls JK. Neutrophilic inflammation in asthma and association with disease severity. Trends Immunol. 2017;38(12):942–954.
  • Sahiner UM, Birben E, Erzurum S, et al. Oxidative stress in asthma: part of the puzzle. Pediatr Allergy Immunol. 2018;29(8):789–800.
  • Lee C, Kolesnik TB, Caminschi I, et al. Suppressor of cytokine signalling 1 (SOCS1) is a physiological regulator of the asthma response. Clin Exp Allergy. 2009;39(6):897–907.
  • Gaber DA. Nanoparticles of lovastatin: design, optimization and in vivo evaluation. Int J Nanomedicine. 2020;154:225–236.
  • Mulenos MR, Lujan H, Pitts LR, et al. Silver nanoparticles agglomerate intracellularly depending on the stabilizing agent: implications for nanomedicine efficacy. Nanomaterials (Basel). 2020;10(10):1953.
  • Wang P, Zhang L, Peng H, et al. The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2013;33(8):4802–4808.
  • Chaudhary K, Haddadin S, Nistala R, et al. Intraperitoneal drug therapy: an advantage. Curr Clin Pharmacol. 2010;5(2):82–88.
  • Ying J, Qiu X, Lu Y, et al. SOCS1 and its potential clinical role in tumor. Pathol Oncol Res. 2019;25(4):1295–1301.
  • Doran E, Choy DF, Shikotra A, et al. Reduced epithelial suppressor of cytokine signalling 1 in severe eosinophilic asthma. Eur Respir J. 2016;48(3):715–725.
  • Pelaia C, Vatrella A, Crimi C, et al. Clinical relevance of understanding mitogen-activated protein kinases involved in asthma. Expert Rev Respir Med. 2020;14(5):501–510.
  • Pelaia C, Vatrella A, Gallelli L, et al. Role of p38 mitogen-activated protein kinase in asthma and COPD: pathogenic aspects and potential targeted therapies. Drug Des Devel Ther. 2021;151:275–284.
  • Santana FPR, Da Silva RC, Ponci V, et al. Dehydrodieugenol improved lung inflammation in an asthma model by inhibiting the STAT3/SOCS3 and MAPK pathways. Biochem Pharmacol. 2020;180:114175.
  • Duncan SA, Sahu R, Dixit S, et al. Suppressors of Cytokine Signaling (SOCS)1 and SOCS3 proteins are mediators of Interleukin-10 modulation of inflammatory responses induced by and its Major Outer Membrane Protein (MOMP) in mouse J774 macrophages. Mediators Inflamm. 2020;2020:7461742.
  • Ahmed CM, Patel AP, Ildefonso CJ, et al. Corneal application of R9-SOCS1-KIR peptide alleviates endotoxin-induced Uveitis. Transl Vis Sci Technol. 2021;10(3):25.