1,828
Views
5
CrossRef citations to date
0
Altmetric
Research paper

β-galactosidase GALA from Bacillus circulans with high transgalactosylation activity

, , , , , , & show all
Pages 8908-8919 | Received 09 Aug 2021, Accepted 29 Sep 2021, Published online: 01 Nov 2021

References

  • Cardoso BB, Silvério SC, Abrunhosa L, et al. β-galactosidase from Aspergillus lacticoffeatus: a promising biocatalyst for the synthesis of novel prebiotics. Int J Food Microbiol. 2017;257:67–74.
  • Vidya B, Palaniswamy M, Angayarkanni J, et al. Purification and characterization of β-galactosidase from newly isolated Aspergillus terreus (KUBCF1306) and evaluating its efficacy on breast cancer cell line (MCF-7). Bioorg Chem. 2019;94:103442.
  • Silvério SC, Macedo EA, Teixeira JA, et al. Perspectives on the biotechnological production and potential applications of lactosucrose: a review. J Funct Foods. 2015;19:74–90.
  • Warmerdam A, Zisopoulos FK, Boom RM, et al. Kinetic characterization of galacto-oligosaccharide (GOS) synthesis by three commercially important β-galactosidases. Biotechnol Prog. 2014;30(1):38–47.
  • Geiger B, Nguyen HM, Wenig S, et al. From by-product to valuable components: efficient enzymatic conversion of lactose in whey using β-galactosidase from streptococcus thermophilus. Biochem Eng J. 2016;116:45–53.
  • González-Delgado I, López-Muñoz M-J, Morales G, et al. Optimisation of the synthesis of high galacto-oligosaccharides (GOS) from lactose with β-galactosidase from Kluyveromyces lactis. Int Dairy J. 2016;61:211–219.
  • Andrade B, Timmers L, Renard G, et al. Microbial β-Galactosidases of industrial importance: computational studies on the effects of point mutations on the lactose hydrolysis reaction. Biotechnol Prog. 2020;36(4):e2982.
  • Rodriguez-Colinas B, Fernandez-Arrojo L, Santos-Moriano P, et al. Continuous packed bed reactor with immobilized β-galactosidase for production of galactooligosaccharides (GOS). Catalysts. 2016;6(12):12.
  • Mahdian SM, Karimi E, Tanipour MH, et al. Expression of a functional cold active β-galactosidase from planococcus sp-L4 in Pichia pastoris. Protein Expr Purif. 2016;125:19–25.
  • Vera C, Guerrero C, Aburto C, et al. Conventional and non-conventional applications of β-galactosidases. Biochim Biophys Acta Proteins Proteom. 2020;1868(1):140271.
  • Martínez-Villaluenga C, Cardelle-Cobas A, Corzo N, et al. Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem. 2008;107(1):258–264.
  • Movahedpour A, Ahmadi N, Ghalamfarsa F, et al. β-Galactosidase: from its source and applications to its recombinant form. Biotechnol Appl Biochem. 2021. DOI:10.1002/bab.2137
  • Aburto C, Guerrero C, Vera C; Illanes. Improvement in the yield and selectivity of lactulose synthesis with Bacillus circulans β-galactosidase. LWT-Food Sci Technol. 2020;118:108746–110874.
  • Rodriguez-Colinas B, Fernandez-Arrojo L, Abreu MD, et al., On the enzyme specificity for the synthesis of prebiotic galactooligosaccharides. Adv Enzym Biotechnol. Springer, New York.2013;pp:23-39.
  • Beneová UR,Z, Těínsk M, Spiwok V, et al. Transglycosylation abilities of β-d-galactosidases from GH family 2. 3 Biotech. 2021;11(4):168.
  • Rodriguez-Colinas B, Poveda A, Jimenez-Barbero J, et al. Galacto-oligosaccharide synthesis from lactose solution or skim milk using the β-galactosidase from Bacillus circulans. J Agric Food Chem. 2012;60(25):6391–6398.
  • Hassan N, Geiger B, Gandini R, et al. Engineering a thermostable halothermothrix orenii β-glucosidase for improved galacto-oligosaccharide synthesis. Appl Microbiol Biotechnol. 2016;100(8):3533–3543.
  • Nguyen VD, Styevko G, Madaras E, et al. Immobilization of β-galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochem. 2019;84:30–38.
  • Nagy Z, Kiss T, Szentirmai A, et al. β-galactosidase of Penicillium chrysogenum: production, purification, and characterization of the enzyme. Protein Expr Purif. 2001;21(1):24–29.
  • Schultz G, Alexander R, Lima FV, et al. Kinetic modeling of the enzymatic synthesis of galacto-oligosaccharides: describing galactobiose formation. Food Bioprod Process. 2021;127:1–13.
  • Thuy DTB, Nguyen AT, Khoo KS, et al. Optimization of culture conditions for gamma-aminobutyric acid production by newly identified Pediococcus pentosaceus MN12 isolated from ‘mam nem’, a fermented fish sauce. Bioengineered. 2021;12(1):54–62.
  • Li D, Li S, Wu Y, et al. Cloning and characterization of a new β-galactosidase from Alteromonas sp. QD01 and Its potential in synthesis of galacto-oligosaccharides. Mar Drugs. 2020;18(6):6.
  • Li Z, Xing. A New β-Galactosidase from the Antarctic Bacterium Alteromonas sp. ANT48 and its potential in formation of prebiotic galacto-oligosaccharides. Mar Drugs. 2019;17(11):11.
  • Barbosa MS, Freire C, Almeida LC, et al. Optimization of the enzymatic hydrolysis of Moringa oleifera Lam oil using molecular docking analysis for fatty acid specificity. Biotechnol Appl Biochem. 2019;66(5):823–832.
  • Box GEP, Wilson KB. Introduction to box and Wilson on the experimental attainment of optimum conditions. J R Stat Soc B (Methodological). 1951;13(1):1–38.
  • Marvdashti LM, Ayatollahi SA, Salehi B, et al. Optimization of edible Alyssum homolocarpum seed gum-chitosan coating formulation to improve the postharvest storage potential and quality of apricot (Prunus armeniaca L.). J Food Saf. 2020;40:4.
  • Trang NTH, Tang DYY, Chew KW, et al. Discovery of α-glucosidase inhibitors from marine microorganisms: optimization of culture conditions and medium composition. Mol Biotechnol. 2021;6(11):1004-1015.
  • Ober PB. Introduction to linear regression analysis. J Appl Stat. 2013;40(12):2775–2776.
  • Raschmanová WA, Knejzlík Z, Melzoch K, et al. Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteinsy. Appl Microbiol Biotechnol. 2021;105(11):4397–4414.
  • Murphy J, Ryan MP, Walsh G. Purification and characterization of a novel β-galactosidase from the thermoacidophile Alicyclobacillus vulcanalis. Appl Biochem Biotechnol. 2020;191(3):1190–1206.
  • Freitas LCH, Albuquerque T, Rocha M, et al. Simultaneous hydrolysis of cheese whey and lactulose production catalyzed by β-galactosidase from Kluyveromyces lactis NRRL Y1564. Bioprocess Biosyst Eng. 2020;43(4):711–722.
  • Carneiro L, Yu L, Paul D, et al. Characterization of a β-galactosidase from Bacillus subtilis with transgalactosylation activity. Int J Biol Macromol. 2018;120:279–287.
  • Carla A, Cecilia G, Carlos, et al. Co-immobilized β-galactosidase and Saccharomyces cerevisiae cells for the simultaneous synthesis and purification of galacto-oligosaccharides. Enzyme Microb Technol. 2018;118:102–108.
  • Lili L, Guo L, Wang K, et al. β-galactosidases: a great tool for synthesizing galactose-containing carbohydrates. Biotechnol Adv. 2020;39:107465.
  • Zhang X, Yao C, Wang T, et al. Production of high-purity galacto-oligosaccharides (GOS) by Lactobacillus-derived β-galactosidase. European Food Res and Tech. 2021;247(6):1501–1510.
  • Zerva A, Limn A Ios A, Kritikou AS, et al. A novel thermophile β-galactosidase from Thermothielavioides terrestris producing galactooligosaccharides from acid whey. N Biotechnol. 2021;63:45–53.
  • González-Delgado I, López-Muñoz M-J, Morales G, et al. Covalent immobilization of Enterococcus faecalis Esawy dextransucrase and dextran synthesis. Int J Biol Macromol. 2016;82:905–912.
  • Torres DPM, Gonçalves MDPF, Teixeira JA, et al. Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci Food Saf. 2010;9(5):438–454.
  • Liu Y, Chen Z, Jiang Z, et al. Biochemical characterization of a novel β-galactosidase from Paenibacillus barengoltzii suitable for lactose hydrolysis and galactooligosaccharides synthesis. Int J Biol Macromol. 2017;104:1055–1063.
  • Palai T, Mitra S, Bhattacharya PK. Kinetics and design relation for enzymatic conversion of lactose into galacto-oligosaccharides using commercial grade β-galactosidase. J Biosci Bioeng. 2012;114(4):418–423.
  • Hung MN, Lee B. Purification and characterization of a recombinant β-galactosidase with transgalactosylation activity from Bifidobacterium infantis HL96. Appl Microbiol Biotechnol. 2002;58(4):439–445.
  • Gao X, Wu J, Wu D. Rational design of the β-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production. Food Chem. 2019;286:362–367.
  • Qin Z, Li S, Huang X, et al. Improving galactooligosaccharide synthesis efficiency of β-galactosidase Bgal1-3 by reshaping the active site with an intelligent hydrophobic amino acid scanning. J Agric Food Chem. 2019;67(40):11158–11166.
  • Oh SY, Youn SY, Park MS, et al. Synthesis of β-galactooligosaccharide using Bifidobacterial β-galactosidase purified from recombinant Escherichia coli. J Microbiol Biotechnol. 2017;27(8):1392–1400.
  • Iqbal S, Nguyen T-H, Nguyen HA, et al. Characterization of a heterodimeric GH2 β-galactosidase from Lactobacillus sakei Lb790 and formation of prebiotic galacto-oligosaccharides. J Agric Food Chem. 2011;59(8):3803–3811.
  • Iqbal S, Nguyen T-H, Nguyen TT, et al. β-galactosidase from Lactobacillus plantarum WCFS1: biochemical characterization and formation of prebiotic galacto-oligosaccharides. Carbohydr Res. 2010;345(10):1408–1416.
  • Nguyen -T-T, Nguyen HA, Arreola SL, et al. Homodimeric β-Galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and Biochemical Characterization. J Agric Food Chem. 2012;60(7):1713–1721.
  • Maischberger T, Leitner E, Nitisinprasert S, et al. β-galactosidase from Lactobacillus pentosus: purification, characterization and formation of galacto-oligosaccharides. Biotechnol J. 2010;5(8):838–847.
  • Tien-Thanh N, Hoang Anh N, Sheryl Lozel A, et al. Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization. J Agric Food Chem. 2012;60(7):1713–1721.
  • Hashem AM, Gamal AA, Hassan ME, et al. Covalent immobilization of Enterococcus faecalis Esawy dextransucrase and dextran synthesis. Int J Biol Macromol. 2016;82:905–912.
  • Wu Y, Yuan S, Chen S, et al. Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus β-galactosidase. Food Chem. 2013;138(2):1588–1595.
  • Lim HR, Choo CM, Chong CH, et al. Optimization studies for water defluoridation with two-stage coagulation processes using new industrial-based chemical coagulants. J Water Process Eng. 2021;42:102179.
  • Urrutia P, Rodriguez-Colinas B, Fernandez-Arrojo L, et al. Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae J Agric Food Chem. 2013;61(5):1081–1087.
  • Ambrogi V, Bottacini F, Callaghan J, et al. Infant-associated Bifidobacterial β-galactosidases and their ability to synthesize galacto-oligosaccharides. Front Microbiol. 2021;12(949):662959.
  • Choi JY, Hong H, Seo H, et al. High galacto-oligosaccharide production and a structural model for transgalactosylation of β-galactosidase II from Bacillus circulans. J Agric Food Chem. 2020;68(47):13806–13814.
  • Sun H, You S, Wang M, et al. Recyclable strategy for the production of high-purity galacto-oligosaccharides by Kluyveromyces lactis. J Agric Food Chem. 2016;64(28):5679–5685.
  • Xin Y, Guo T, Zhang Y, et al. A new β-galactosidase extracted from the infant feces with high hydrolytic and transgalactosylation activity. Appl Microbiol Biotechnol. 2019;103(20):8439–8448.
  • Volford B, Varga M, Szekeres A, et al. β-galactosidase-producing isolates in mucoromycota: screening, enzyme production, and applications for functional oligosaccharide synthesis. Journal of Fungi. 2021;7(3):229.