1,756
Views
1
CrossRef citations to date
0
Altmetric
Research paper

CRISPR/Cas9-mediated overexpression of long non-coding RNA SRY-box transcription factor 21 antisense divergent transcript 1 regulates the proliferation of osteosarcoma by increasing the expression of mechanistic target of rapamycin kinase and Kruppel-like factor 4

, , &
Pages 6677-6686 | Received 05 Aug 2021, Accepted 13 Oct 2021, Published online: 02 Mar 2022

References

  • Jo VY, Fletcher CD. Who classification of soft tissue tumours: an update based on the 2013 (4th) edition. Pathology. 2014;46:95–104.
  • Zhang YL, Pu YC, Wang J, et al. Research progress regarding the role of long non-coding RNAs in osteosarcoma. Oncol Lett. 2020;20:2606–2612.
  • Miller RW. Contrasting epidemiology of childhood osteosarcoma, ewing’s tumor, and rhabdomyosarcoma. Natl Cancer Inst Monogr. 1981;56:9–15.
  • Takahashi H, Rokudai S, Kawabata-Iwakawa R, et al. AKT3 is a key regulator of head and neck squamous cell carcinoma. Cancer Sci. 2021;112:2325–2334.
  • Suyama K, Yao JH, Liang HZ, et al. An AKT3 splice variant lacking the serine 472 phosphorylation site promotes apoptosis and suppresses mammary tumorigenesis. Cancer Res. 2018;78:103–114.
  • Turner KM, Sun YT, Ji P, et al. Genomically amplified AKT3 activates DNA repair pathway and promotes glioma progression. Proc Natl Acad Sci U S A. 2015;112:3421–3426.
  • Sousa L, Pankonien I, Clarke LA, et al. Klf4 acts as a wt-CFTR suppressor through an akt-mediated pathway. Cells-Basel. 2020;9:1607.
  • Liu J, Shangguan Y, Sun J, et al. Baiap2l2 promotes the progression of gastric cancer via akt/mtor and Wnt3a/beta-catenin signaling pathways. Biomed Pharmacother. 2020;129:110414.
  • Xu GY, Yang Hl, Liu MC, et al. lncrna tincr facilities bladder cancer progression via regulating mir-7 and mtor. Mol Med Rep. 2020;22:4243–4253.
  • Mossmann D, Park S, Hall MN. Mtor signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer. 2018;18:744–757.
  • Yang WT, Zheng PS. Kruppel-like factor 4 functions as a tumor suppressor in cervical carcinoma. Cancer-Am Cancer Soc. 2012;118:3691–3702.
  • Guan HF, Xie LK, Leithauser F, et al. Klf4 is a tumor suppressor in b-cell non-Hodgkin lymphoma and in classic Hodgkin lymphoma. Blood. 2010;116:1469–1478.
  • Luan T, Zhang XM, Wang SY, et al. Long non-coding RNA miat promotes breast cancer progression and functions as cerna to regulate dusp7 expression by sponging mir-155-5p. Oncotarget. 2017;8:76153–76164.
  • Cui Y, Xiao Z, Chen T, et al. The mir-7 identified from collagen biomaterial-based three-dimensional cultured cells regulates neural stem cell differentiation. Stem Cells Dev. 2014;23:393–405.
  • Li YZ, Wen L, Wei X, et al. Inhibition of mir-7 promotes angiogenesis in human umbilical vein endothelial cells by upregulating vegf via klf4. Oncol Rep. 2016;36:1569–1575.
  • Glover AR, Zhao JT, Gill AJ, et al. microRNA-7 as a tumor suppressor and novel therapeutic for adrenocortical carcinoma. Oncotarget. 2015;6:36675–36688.
  • Xu N, Papagiannakopoulos T, Pan Gj, et al. microRNA-145 regulates oct4, sox2, and klf4 and represses pluripotency in human embryonic stem cells. Cell. 2009;137:647–658.
  • Liu Z, Yan Y, Cao SZ, et al. long non-coding RNA snhg14 contributes to gastric cancer development through targeting mir-145/sox9 axis. J Cell Biochem. 2018;119:6905–6913.
  • Xie Y, Zhang SJ, Lv ZY, et al. Sox21-as1 modulates neuronal injury of MMP+-treated sh-sy5y cells via targeting mir-7-5p and inhibiting irs2. Neurosci Lett. 2021;746:135602.
  • Wei AW, Li LF. long non-coding RNA sox21-as1 sponges mir-145 to promote the tumorigenesis of colorectal cancer by targeting myo6. Biomed Pharmacother. 2017;96:953–959.
  • Kim YJ, Zhang DB, Yang DC. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv. 2015;33:717–735.
  • Joo EJ, Chun J, Ha YW, et al. Novel roles of ginsenoside rg3 in apoptosis through downregulation of epidermal growth factor receptor. Chem Biol Interact. 2015;233:25–34.
  • kim bm, kim dh, park jh, et al. Ginsenoside Rg3 induces apoptosis of human breast cancer (mda-mb-231) cells. J Cancer Prev. 2013;18:177–185.
  • Xie F, Liu S, Wang J, et al. Deepbase v3.0: expression atlas and interactive analysis of ncrnas from thousands of deep-sequencing data. Nucleic Acids Res. 2021;49:d877–d83.
  • Chandrashekar DS, Bashel B, Balasubramanya Sah, et al. Ualcan: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–658.
  • Lin Y, Liu T, Cui T, et al. Rnainter in 2020: RNA interactome repository with increased coverage and annotation. Nucleic Acids Res. 2020;48:d189–d97.
  • Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at ucsc. Genome Res. 2002;12:996–1006.
  • Tang ZF, Kang BX, Li CW, et al. Gepia2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47(w1):w556–w60.
  • Castano J, Bueno C, Jimenez-Delgado S, et al. Generation and characterization of a human ipsc cell line expressing inducible Cas9 in the “safe harbor” aavs1 locus. Stem Cell Res. 2017;21:137–140.
  • He BC, Gao Jl, Luo X, et al. Ginsenoside rg3 inhibits colorectal tumor growth through the down-regulation of wnt/ß-catenin signaling. Int J Oncol. 2011;38:437–445.
  • Lambolez B, Rossier J. Quantitative rt-pcr. Nat Biotechnol. 2000;18:5.
  • Luo Y, Zhang P, Zeng HQ, et al. Ginsenoside Rg3 induces apoptosis in human multiple myeloma cells via the activation of Bcl-2-associated x protein. Mol Med Rep. 2015;12:3557–3562.