3,977
Views
6
CrossRef citations to date
0
Altmetric
Review

Nanopore sensors for viral particle quantification: current progress and future prospects

, , , &
Pages 9189-9215 | Received 09 Sep 2021, Accepted 16 Oct 2021, Published online: 22 Nov 2021

References

  • Tarim EA, Karakuzu B, Oksuz C, et al. Microfluidic-based virus detection methods for respiratory diseases. Emergent Mater. 2021;2:143–168.
  • Udugama B, Kadhiresan P, Kozlowski HN, et al. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020 Apr;14(4):3822–3835.
  • Adigal SS, Rayaroth NV, John RV, et al. A review on human body fluids for the diagnosis of viral infections: scope for rapid detection of COVID-19. Expert Rev Mol Diagn. 2021 Jan;21(1):31–42.
  • Diao M, Lang L, Feng J, et al. Molecular detections of coronavirus: current and emerging methodologies. Expert Rev Anti Infect Ther. 2021 Jul;1–12. DOI:10.1080/14787210.2021.1949986
  • Wu K, Saha R, Su D, et al. Magnetic-nanosensor-based virus and pathogen detection strategies before and during COVID-19. ACS Appl Nano Mater. 2020 Oct;3(10):9560–9580.
  • Gray MC, Su W-Y, Van Hal SJ. Improving influenza virus detection. Expert Opin Med Diagn. 2012;6(1):75–87.
  • Prasad S, Potdar V, Cherian S, et al. Transmission electron microscopy imaging of SARS-CoV-2. Indian J Med Res. 2020;151(2–3):241.
  • Sheikhzadeh E, Eissa S, Ismail A, et al. Diagnostic techniques for COVID-19 and new developments. Talanta. 2020;220(May):121392.
  • Kumar P. Methods for rapid virus identification and quantification. Mater Methods. 2013;3:207.
  • Cao C, Long YT. Biological nanopores: confined spaces for electrochemical single-molecule analysis. Acc Chem Res. 2018;51(2):331–341.
  • Lepoitevin M, Ma T, Bechelany M, et al. Functionalization of single solid state nanopores to mimic biological ion channels: a review. Adv Colloid Interface Sci. 2017;250:195–213.
  • Varongchayakul N, Song J, Meller A, et al. Single-molecule protein sensing in a nanopore: a tutorial. Chem Soc Rev. 2018;47(23):8512–8524.
  • Xu J, Merlier F, Avalle B, et al. Molecularly imprinted polymer nanoparticles as potential synthetic antibodies for immunoprotection against HIV. ACS Appl Mater Interfaces. 2019;11(10):9824–9831.
  • Branton D, Deamer DW, Marziali A, et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 2008;26(10):1146–1153.
  • Venkatesan BM, Bashir R. Nanopore sensors for nucleic acid analysis. Nat Nanotechnol. 2011;6(10):615–624.
  • Heerema SJ, Vicarelli L, Pud S, et al. Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano. 2018;12(3):2623–2633.
  • Tsutsui M, Yoshida T, Yokota K, et al. Discriminating single-bacterial shape using low-aspect-ratio pores. Sci. Rep. 2017;7(1):1–9.
  • Wang L, Yao F, Kang X. Nanopore single-molecule analysis of metal ion-chelator chemical reaction. Anal Chem. 2017;89(15):7958–7965.
  • Roozbahani GM, Chen X, Zhang Y, et al. Nanopore detection of metal ions: current status and future directions. Small Methods. 2020;4(10):2000266.
  • Cai S, Sze JYY, Ivanov AP, et al. Small molecule electro-optical binding assay using nanopores. Nat Commun. 2019;10(1):1–9.
  • Somerville JA, Willmott GR, Eldridge J, et al. Size and charge characterisation of a submicrometre oil-in-water emulsion using resistive pulse sensing with tunable pores. J Colloid Interface Sci. 2013;394:243–251.
  • Stoloff DH, Wanunu M. Recent trends in nanopores for biotechnology. Curr Opin Biotechnol. 2013;24(4):699–704.
  • Willmott GR, Fisk MG, Eldridge J. Magnetic microbead transport during resistive pulse sensing. Biomicrofluidics. 2013;7(6):64106.
  • Howorka S, Siwy Z. Nanopore analytics: sensing of single molecules. Chem Soc Rev. 2009;38(8):2360–2384.
  • Maas SLN, Broekman MLD, De Vrij J Tunable resistive pulse sensing for the characterization of extracellular vesicles. In: Exosomes and microvesicles, pp. 21-33. Humana Press, New York, NY, 2017.
  • Darvish A, Goyal G, Kim M. Sensing, capturing, and interrogation of single virus particles with solid state nanopores. Adv Glob Heal through Sens Technol. 2015;9490(May 2015):94900M.
  • Arima A, Tsutsui M, Harlisa IH, et al. Selective detections of single-viruses using solid-state nanopores. Sci. Rep. 2018;8(1):16305.
  • Apetrei A, Ciuca A, Lee J, et al. A protein nanopore-based approach for bacteria sensing. Nanoscale Res Lett. 2016;11(1):1–12.
  • Oh S, Lee MK, Chi SW. Single-molecule-based detection of conserved influenza A Virus RNA promoter using a protein nanopore. ACS Sens. 2019;4(11):2849–2853.
  • Uram JD, Ke K, Hunt AJ, et al. Submicrometer pore‐based characterization and quantification of antibody–virus interactions. Small. 2006;2(8‐9):967–972.
  • Arima A, Harlisa IH, Yoshida T, et al. Identifying single viruses using biorecognition solid-state nanopores. J. Am. Chem. Soc. 2018;140(48):16834–16841.
  • Nazari M, Li X, Alibakhshi MA, et al. Femtosecond photonic viral inactivation probed using solid-state nanopores. Nano Futur. 2018;2(4). DOI:10.1088/2399-1984/aadf9d
  • Arjmandi N, Van Roy W, Lagae L. Measuring mass of nanoparticles and viruses in liquids with nanometer-scale pores. Anal Chem. 2014;86(10):4637–4641.
  • Arjmandi N, Van Roy W, Lagae L, et al. Measuring the electric charge and zeta potential of nanometer-sized objects using pyramidal-shaped nanopores. Anal Chem. 2012;84(20):8490–8496.
  • Darvish A, Lee JS, Peng B, et al. Mechanical characterization of HIV-1 with a solid-state nanopore sensor. Electrophoresis. 2019;40(5):776–783.
  • Shi W, Friedman AK, Baker LA. Nanopore Sensing. Anal Chem. 2017;89(1):157–188.
  • Miles BN, Ivanov AP, Wilson KA, et al. Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chem Soc Rev. 2013;42(1):15–28.
  • Kono N, Arakawa K. Nanopore sequencing: review of potential applications in functional genomics. Dev Growth Differ. 2019 Jun;61(5):316–326.
  • Yang L, Yamamoto T. Quantification of virus particles using nanopore-based resistive-pulse sensing techniques. Front Microbiol. 2016;7:1500.
  • Burrell CJ, Howard CR, Murphy FA. Laboratory diagnosis of virus diseases. Fenner White’s Med Virol. 2017;135.
  • Morales-Narváez E, Dincer C. The impact of biosensing in a pandemic outbreak: COVID-19. Biosens. Bioelectron. 2020;163:112274.
  • Hong KH, Lee SW, Kim TS, et al. Guidelines for laboratory diagnosis of coronavirus disease 2019 (COVID-19) in Korea. Ann. Lab. Med. 2020;40(5):351–360.
  • Grant BD, Anderson CE, Williford JR, et al. SARS-CoV-2 coronavirus nucleocapsid antigen-detecting half-strip lateral flow assay toward the development of point of care tests using commercially available reagents. Anal. Chem. 2020;92(16):11305–11309.
  • Yuce M, Filiztekin E, Zkaya KG. COVID-19 diagnosis-A review of current methods. Biosens. Bioelectron. 2020;172:112752.
  • Mamad-Hemouch H, Ramoul H, Abou Taha M, et al. Biomimetic nanotubes based on cyclodextrins for ion-channel applications. Nano Letters. 2015;15(11):7748–7754.
  • Kawano R, Osaki T, Sasaki H, et al. A polymer‐based nanopore‐integrated microfluidic device for generating stable bilayer lipid membranes. Small. 2010;6(19):2100–2104.
  • Kasianowicz JJ, Brandin E, Branton D, et al. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci. 1996;93(24):13770–13773.
  • Braha O, Gu L-Q, Zhou L, et al. Simultaneous stochastic sensing of divalent metal ions. Nat Biotechnol. 2000;18(9):1005–1007.
  • Cao C, Ying Y-L, Hu Z-L, et al. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nat Nanotechnol. 2016;11(8):713–718.
  • Ettedgui J, Kasianowicz JJ, Balijepalli A. Single molecule discrimination of heteropolytungstates and their isomers in solution with a nanometer-scale pore. J Am Chem Soc. 2016;138(23):7228–7231.
  • Fahie M, Chisholm C, Chen M. Resolved single-molecule detection of individual species within a mixture of anti-biotin antibodies using an engineered monomeric nanopore. ACS Nano. 2015;9(2):1089–1098.
  • Branton D, Deamer DW, Marziali A, et al. The potential and challenges of nanopore sequencing. Nanoscience and technology: A collection of reviews from Nature Journals, pp.261-268.
  • Ayub M, Stoddart D, Bayley H. Nucleobase recognition by truncated α-hemolysin pores. ACS Nano. 2015;9(8):7895–7903.
  • Wang Y-Q, Cao C, Ying Y-L, et al. Rationally designed sensing selectivity and sensitivity of an aerolysin nanopore via site-directed mutagenesis. ACS Sens. 2018;3(4):779–783.
  • Naveed H, Liang J. Engineering biological nanopores with enhanced properties. Biophys J. 2012;102(3):188a–189a.
  • Ying YL, Cao C, Long YT. Single molecule analysis by biological nanopore sensors. Analyst. 2014;139(16):3826–3835.
  • Tanaka Y, Hirano N, Kaneko J, et al. 2 Methyl 2, 4 pentanediol induces spontaneous assembly of staphylococcal hemolysin into heptameric pore structure. Protein Sci. 2011;20(2):448–456.
  • Faller M, Niederweis M, Schulz GE. The structure of a mycobacterial outer-membrane channel. Science. 2004;303(5661):1189–1192.
  • Iacovache I, De Carlo S, Cirauqui N, et al. Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. Nat Commun. 2016;7(1):12062.
  • Guasch A, Pous J, Ibarra B, et al. Detailed architecture of a DNA translocating machine: the high-resolution structure of the bacteriophage φ29 connector particle11Edited by R. Huber. J. Mol. Biol. 2002;315(4):663–676.
  • Mueller M, Grauschopf U, Maier T, et al. The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism. Nature. 2009;459(7247):726–730.
  • Subbarao GV, Van Den Berg B. Crystal structure of the monomeric porin OmpG. J Mol Biol. 2006;360(4):750–759.
  • Otwinowski Z, Schevitz RW, Zhang R-G, et al. Crystal structure of trp represser/operator complex at atomic resolution. Nature. 1988;335(6188):321–329.
  • Deamer D, Akeson M, Branton D. Three decades of nanopore sequencing. Nat Biotechnol. 2016;34(5):518–524.
  • White RJ, Ervin EN, Yang T, et al. Single ion-channel recordings using glass nanopore membranes. J. Am. Chem. Soc. 2007 Sep;129(38):11766–11775.
  • Bello J, Kim Y-R, Kim SM, et al. Lipid bilayer membrane technologies: a review on single-molecule studies of DNA sequencing by using membrane nanopores. Microchim Acta. 2017;184(7):1883–1897.
  • Hall AR, Scott A, Rotem D, et al. Hybrid pore formation by directed insertion of α-haemolysin into solid-state nanopores. Nat Nanotechnol. 2010;5(12):874–877.
  • De La Escosura-Muñiz A, Merkoçi A. Nanochannels preparation and application in biosensing. ACS Nano. 2012;6(9):7556–7583.
  • Zhang Z, Sui X, Li P, et al. Ultrathin and ion-selective janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 2017 Jul;139(26):8905–8914.
  • Lee K, Park K-B, Kim H-J, et al. Recent progress in solid state nanopores. Adv. Mater. 2018;30(42):1704680.
  • Spitzberg JD, Zrehen A, Van Kooten XF, et al. Plasmonic‐nanopore biosensors for superior single‐molecule detection. Adv Mater. 2019;31(23):1900422.
  • Firnkes M, Pedone D, Knezevic J, et al. Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis. Nano Lett. 2010;10(6):2162–2167.
  • Spitzberg JD, Van Kooten XF, Bercovici M, et al. Microfluidic device for coupling isotachophoretic sample focusing with nanopore single-molecule sensing. Nanoscale. 2020;12(34):17805–17811.
  • Roelen Z, Bustamante JA, Carlsen A, et al. Instrumentation for low noise nanopore-based ionic current recording under laser illumination. Rev Sci Instrum. 2018;89(1):15007.
  • Pan R, Hu K, Jiang D, et al. Electrochemical resistive-pulse sensing. J Am Chem Soc. 2019;141(50):19555–19559. ACS Publications.
  • Li J, Stein D, McMullan C, et al. Ion-beam sculpting at nanometre length scales. Nature. 2001;412(6843):166–169.
  • Liu S, Lu B, Zhao Q, et al. Boron nitride nanopores: highly sensitive DNA single‐molecule detectors. Adv. Mater. 2013;25(33):4549–4554.
  • Freedman KJ, Haq SR, Fletcher MR, et al. Nonequilibrium capture rates induce protein accumulation and enhanced adsorption to solid-state nanopores. ACS Nano. 2014;8(12):12238–12249.
  • Yusko EC, Bruhn BR, Eggenberger O, et al. Real-time shape approximation and 5-D fingerprinting of single proteins. Nature nanotechnology 2017;12(4):360-367.
  • Wanunu M, Meller A. Chemically modified solid-state nanopores. Nano Lett. 2007 Jun;7(6):1580–1585.
  • Balme S, Lepoitevin M, Dumée LF, et al. Diffusion dynamics of latex nanoparticles coated with ssDNA across a single nanopore. Soft Matter. 2017;13(2):496–502.
  • Apel PY, Blonskaya IV, Dmitriev SN, et al. Surfactant-controlled etching of ion track nanopores and its practical applications in membrane technology. Radiat. Meas. 2008;43:S552–S559.
  • Pevarnik M, Healy K, Davenport M, et al. A hydrophobic entrance enhances ion current rectification and induces dewetting in asymmetric nanopores. Analyst. 2012;137(13):2944–2950.
  • Storm AJ, Chen JH, Ling XS, et al. Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater. 2003;2(8):537–540.
  • Venkatesan BM, Shah AB, Zuo JM, et al. DNA sensing using nanocrystalline surface enhanced Al2O3 nanopore sensors. Adv Funct Mater. 2010;20(8):1266–1275.
  • Larkin J, Henley R, Bell DC, et al. Slow DNA transport through nanopores in hafnium oxide membranes. ACS Nano. 2013;7(11):10121–10128.
  • Apel P. Track etching technique in membrane technology. Radiat Meas. 2001;34(1–6):559–566.
  • Garaj S, Hubbard W, Reina A, et al. Graphene as a subnanometre trans-electrode membrane. Nature. 2010;467(7312):190–193.
  • Jain T, Rasera BC, Guerrero RJS, et al. Heterogeneous sub-continuum ionic transport in statistically isolated graphene nanopores. Nat. Nanotechnol. 2015;10(12):1053–1057.
  • Feng L, Cao M, Ma X, et al. Superparamagnetic high-surface-area Fe3O4 nanoparticles as adsorbents for arsenic removal. J Hazard Mater. 2012;217–218:439–446.
  • Feng J, Liu K, Graf M, et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Letters. 2015;15(5):3431–3438.
  • White HS, Bund A. Ion current rectification at nanopores in glass membranes. Langmuir. 2008 Mar;24(5):2212–2218.
  • Steinbock LJ, Krishnan S, Bulushev RD, et al. Probing the size of proteins with glass nanopores. Nanoscale. 2014;6(23):14380–14387.
  • Wang G, Bohaty AK, Zharov I, et al. Photon gated transport at the glass nanopore electrode. J Am Chem Soc. 2006 Oct;128(41):13553–13558.
  • Fornasiero F, In JB, Kim S, et al. pH-Tunable ion selectivity in carbon nanotube pores. Langmuir. 2010 Sep;26(18):14848–14853.
  • Geng J, Kim K, Zhang J, et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature. 2014;514(7524):612–615.
  • Siria A, Poncharal P, Biance A-L, et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature. 2013;494(7438):455–458.
  • Létant SE. Functional nanostructured platforms for chemical and biological sensing. Micro Nanotechnologies Sp Appl. 2006;6223(May 2006):62230B.
  • Petrov YV, Ubyivovk EV, Baraban AP. Fabrication of nanopores in silicon nitride membrane by means of wet etching enhanced by focused helium ion beam irradiation. AIP Conf Proc. 2019;2064(1):30012.
  • Gierak J, Madouri A, Biance AL, et al. Sub-5 nm FIB direct patterning of nanodevices. Microelectron. Eng. 2007;84(5–8):779–783.
  • Kennedy E, Dong Z, Tennant C, et al. Reading the primary structure of a protein with 0.07 nm 3 resolution using a subnanometre-diameter pore. Nat Nanotechnol. 2016;11(11):968–976.
  • Chung NX, Gatty HK, Lu X, et al. Optimized electrochemical breakdown etching using temporal voltage variation for formation of nanopores in a silicon membrane. Sens Actuators B Chem. 2021;331(December 2020):1–9.
  • Waugh M, Briggs K, Gunn D, et al. Solid-state nanopore fabrication by automated controlled breakdown. Nat. Protoc. 2020;15(1):122–143.
  • Chen Q, Wang Y, Deng T, et al. Fabrication of nanopores and nanoslits with feature sizes down to 5 nm by wet etching method. Nanotechnology. 2018;29(8):85301.
  • Fried JP, Swett JL, Nadappuram BP, et al. In situ solid-state nanopore fabrication. Chem. Soc. Rev. 2021;50(8):4974–4992.
  • Kim MJ, McNally B, Murata K, et al. Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology. 2007;18(20):205302.
  • Prakash S, Pinti M, Bellman K. Variable cross-section nanopores fabricated in silicon nitride membranes using a transmission electron microscope. J Micromech Microeng. 2012;22(6):67002.
  • Spinney PS, Howitt DG, Smith RL, et al. Nanopore formation by low-energy focused electron beam machining. Nanotechnology. 2010;21(37):375301.
  • Lanyon YH, De Marzi G, Watson YE, et al. Fabrication of nanopore array electrodes by focused ion beam milling. Anal. Chem. 2007;79(8):3048–3055.
  • Briggs K, Charron M, Kwok H, et al. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution. Nanotechnology. 2015;26(8):84004.
  • Kwok H, Briggs K, Tabard-Cossa V. Nanopore fabrication by controlled dielectric breakdown. PLoS One. 2014;9(3):e92880.
  • Marshall MM, Yang J, Hall AR. Direct and transmission milling of suspended silicon nitride membranes with a focused helium ion beam. Scanning. 2012 Mar;34(2):101–106.
  • Gilbert SM, Dunn G, Azizi A, et al. Fabrication of subnanometer-precision nanopores in hexagonal boron nitride. Sci. Rep. 2017;7(1):1–7.
  • Mara A, Siwy Z, Trautmann C, et al. An asymmetric polymer nanopore for single molecule detection. Nano Lett. 2004;4(3):497–501.
  • Deng T, Chen J, Si W, et al. Fabrication of silicon nanopore arrays using a combination of dry and wet etching. J Vac Sci Technol B, Nanotechnol Microelectron Mater Process Meas Phenom. 2012;30(6):61804.
  • Park SR, Peng H, Ling XS. Fabrication of nanopores in silicon chips using feedback chemical etching. Small. 2007;3(1):116–119.
  • Bian F, Tian YC, Wang R, et al. Ultrasmall silver nanopores fabricated by femtosecond laser pulses. Nano Letters. 2011 Aug;11(8):3251–3257.
  • Chung NX, Gatty HK, Lu X, et al. Optimized electrochemical breakdown etching using temporal voltage variation for formation of nanopores in a silicon membrane. Sens Actuators B Chem. 2021;331(October 2020):1–9.
  • Prakash S, Pinti M, Bhushan B. Review article: theory, fabrication and applications of microfluidic and nanofluidic biosensors. Philos Trans R Soc A Math Phys Eng Sci. 2012;370(1967):2269–2303.
  • Alahmad W, Varanusupakul P, Varanusupakul P. Recent developments and applications of microfluidic paper-based analytical devices for the detection of biological and chemical hazards in foods: a critical review. Crit Rev Anal Chem. 2021 Jul;1–20. DOI:10.1080/10408347.2021.1949695
  • Fu J, Wu L, Qiao Y, et al. Microfluidic systems applied in solid-state nanopore sensors. Micromachines. 2020;11(3):332.
  • Jain T, Guerrero RJS, Aguilar CA, et al. Integration of solid-state nanopores in microfluidic networks via transfer printing of suspended membranes. Anal Chem. 2013;85(8):3871–3878.
  • Yanagi I, Akahori R, Aoki M, et al. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si 3 N 4 membranes. Lab Chip. 2016;16(17):3340–3350.
  • Tahvildari R, Beamish E, Tabard-Cossa V, et al. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown. Lab Chip. 2015;15(6):1407–1411.
  • Tahvildari R, Beamish E, Briggs K, et al. Manipulating electrical and fluidic access in integrated nanopore microfluidic arrays using microvalves. small. 2017;13(10):1602601.
  • Liu S, Zhao Y, Parks JW, et al. Correlated electrical and optical analysis of single nanoparticles and biomolecules on a nanopore-gated optofluidic chip. Nano Lett. 2014 Aug;14(8):4816–4820.
  • Varongchayakul N, Hersey JS, Squires A, et al. A solid state hard microfluidic nanopore biosensor with multilayer fluidics and on chip bioassay/purification chamber. Adv Funct Mater. 2018;28(50):1804182.
  • Wu H-C, Astier Y, Maglia G, et al. Protein nanopores with covalently attached molecular adapters. J Am Chem Soc. 2007 Dec;129(51):16142–16148.
  • Lin Y, Ying Y-L, Gao R, et al. Single-molecule sensing with nanopore confinement: from chemical reactions to biological interactions. Chemistry - A European Journal. 2018 Sep;24(50):13064–13071.
  • Eggenberger OM, Ying C, Mayer M. Surface coatings for solid-state nanopores. Nanoscale. 2019;11(42):19636–19657.
  • Gu L-Q, Cheley S, Bayley H. Prolonged residence time of a noncovalent molecular adapter, -cyclodextrin, within the lumen of mutant -hemolysin pores. J Gen Physiol. 2001;118(5):481–494.
  • Majd S, Yusko EC, Billeh YN, et al. Applications of biological pores in nanomedicine, sensing, and nanoelectronics. Curr Opin Biotechnol. 2010;21(4):439–476.
  • Hlady V, Buijs J. Protein adsorption on solid surfaces. Curr Opin Biotechnol. 1996;7(1):72–77.
  • Powell MR, Cleary L, Davenport M, et al. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat Nanotechnol. 2011;6(12):798–802.
  • Sparreboom W, Van Den Berg A, Eijkel JCT. Principles and applications of nanofluidic transport. Nat Nanotechnol. 2009;4(11):713–720.
  • Fologea D, Uplinger J, Thomas B, et al. Slowing DNA translocation in a solid-state nanopore. Nano Lett. 2005;5(9):1734–1737.
  • Yusko EC, Johnson JM, Majd S, et al. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 2011;6(4):253–260.
  • Thangaraj V, Lepoitevin M, Smietana M, et al. Detection of short ssDNA and dsDNA by current-voltage measurements using conical nanopores coated with Al 2 O 3 by atomic layer deposition. Microchim Acta. 2016;183(3):1011–1017.
  • Rollings R, Graef E, Walsh N, et al. The effects of geometry and stability of solid-state nanopores on detecting single DNA molecules. Nanotechnology. 2015;26(4):44001.
  • Li X, Hu R, Li J, et al. Non-sticky translocation of bio-molecules through Tween 20-coated solid-state nanopores in a wide pH range. Appl. Phys. Lett. 2016;109(14):143105.
  • Rosen MJ, Kunjappu JT. Surfactants and interfacial phenomena. Hoboken, NJ): John Wiley & Sons; 2012.
  • Whitesides GM, Kriebel JK, Love JC. Molecular engineering of surfaces using self-assembled monolayers. Sci Prog. 2005;88(1):17–48.
  • Ananth A, Genua M, Aissaoui N, et al. Reversible immobilization of proteins in sensors and solid state nanopores. Small. 2018;14(18):1703357.
  • Martin CR, Nishizawa M, Jirage K, et al. Controlling ion-transport selectivity in gold nanotubule membranes. Adv Mater. 2001 Sep;13(18):1351–1362.
  • Wei R, Gatterdam V, Wieneke R, et al. Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat Nanotechnol. 2012;7(4):257–263.
  • Yu S, Lee SB, Kang M, et al. Size-based protein separations in poly (ethylene glycol)-derivatized gold nanotubule membranes. Nano Lett. 2001;1(9):495–498.
  • Emilsson G, Sakiyama Y, Malekian B, et al. Gating protein transport in solid state nanopores by single molecule recognition. ACS Cent. Sci. 2018;4(8):1007–1014.
  • Zambrana-Puyalto X, Maccaferri N, Ponzellini P, et al. Site-selective functionalization of plasmonic nanopores for enhanced fluorescence emission rate and Forster resonance energy transfer. Nanoscale Adv. 2019;1(6):2454–2461.
  • Wang C, Fu Q, Wang X, et al. Atomic layer deposition modified track-etched conical nanochannels for protein sensing. Anal. Chem. 2015;87(16):8227–8233.
  • Hu R, Diao J, Li J, et al. Intrinsic and membrane-facilitated -synuclein oligomerization revealed by label-free detection through solid-state nanopores. Sci Rep. 2016;6(1):1–11.
  • Tan S, Wang L, Liu H, et al. Single nanoparticle translocation through chemically modified solid nanopore. Nanoscale Res Lett. 2016;11(1):1–10.
  • Lepoitevin M, Jamilloux B, Bechelany M, et al. Fast and reversible functionalization of a single nanopore based on layer-by-layer polyelectrolyte self-assembly for tuning current rectification and designing sensors. RSC Adv. 2016;6(38):32228–32233.
  • Ali M, Yameen B, Cervera J, et al. Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J. Am. Chem. Soc. 2010;132(24):8338–8348.
  • Alem H, Blondeau F, Glinel K, et al. Layer-by-layer assembly of polyelectrolytes in nanopores. Macromolecules. 2007;40(9):3366–3372.
  • Djozan D, Ebrahimi B, Mahkam M, et al. Evaluation of a new method for chemical coating of aluminum wire with molecularly imprinted polymer layer. Application for the fabrication of triazines selective solid-phase microextraction fiber. Anal Chim Acta. 2010;674(1):40–48.
  • Eggenberger OM, Leriche G, Koyanagi T, et al. Fluid surface coatings for solid-state nanopores: comparison of phospholipid bilayers and archaea-inspired lipid monolayers. Nanotechnology. 2019;30(32):325504.
  • Yusko EC, Bruhn BR, Eggenberger OM, et al. Real-time shape approximation and fingerprinting of single proteins using a nanopore. Nat. Nanotechnol. 2017;12(4):360–367.
  • Robertson JWF, Rodrigues CG, Stanford VM, et al. Single-molecule mass spectrometry in solution using a solitary nanopore. Proc Natl Acad Sci. 2007;104(20):8207–8211.
  • Trémeaux P, Caporossi A, Thélu M-A, et al. Hepatitis C virus whole genome sequencing: current methods/issues and future challenges. Crit. Rev. Clin. Lab. Sci. 2016 Sep;53(5):341–351.
  • DeBlois RW, Bean CP, Wesley RKA. Electrokinetic measurements with submicron particles and pores by the resistive pulse technique. J Colloid Interface Sci. 1977;61(2):323–335.
  • Feuer BI, Uzgiris EE, Deblois RW, et al. Length of glycoprotein spikes of vesicular stomatitis virus and sindbis virus, measured in Situ using quasi elastic light scattering and a resistive-pulse technique. Virology. 1978;90(1):156–161.
  • Zhou K, Li L, Tan Z, et al. Characterization of hepatitis B virus capsids by resistive-pulse sensing. J Am Chem Soc. 2011;133(6):1618–1621.
  • McMullen A, De Haan HW, Tang JX, et al. Buckling causes nonlinear dynamics of filamentous viruses driven through nanopores. Phys Rev Lett. 2018;120(7):78101.
  • Miyagawa T, Hongo S, Nakamura N, et al. A novel diagnostic system for infectious diseases using solid-state nanopore devices. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2018;2018-July:2833–2836.
  • Taniguchi M, Minami S, Ono C, et al. Combining machine learning and nanopore construction creates an artificial intelligence nanopore for coronavirus detection. Nat. Commun. 2021;12(1):1–8.
  • Cavanagh D. Innovation and discovery: the application of nucleic acid-based technology to avian virus detection and characterization. Avian Pathol. 2001 Dec;30(6):581–598.
  • Nguyen BTT, Koh G, Lim HS, et al. Membrane-based electrochemical nanobiosensor for the detection of virus. Anal Chem. 2009;81(17):7226–7234.
  • Nguyen BTT, Peh AEK, Chee CYL, et al., “Electrochemical impedance spectroscopy characterization of nanoporous alumina dengue virus biosensor,”. Bioelectrochemistry. 2012;88:15–21.
  • Peh AEK, Li SFY. Dengue virus detection using impedance measured across nanoporous alumina membrane. Biosens Bioelectron. 2013;42(1):391–396.
  • DeBlois RW, Wesley RK. Sizes and concentrations of several type C oncornaviruses and bacteriophage T2 by the resistive-pulse technique. J Virol. 1977;23(2):227–233.
  • McMullen A, Liu X, Tang J, et al. Solid-state nanopores for detection of rod-like viruses and trapping of single DNA molecules. 2012 Lester Eastman Conf High Perform Devices, LEC. 2012;2012(c):8–9.
  • Das N, RoyChaudhuri C. Reliability study of nanoporous silicon oxide impedance biosensor for virus detection: influence of surface roughness. IEEE Trans Device Mater Reliab. 2015;15(3):402–409.
  • Wu H, Chen Y, Zhou Q, et al. Translocation of rigid rod-shaped virus through various solid-state nanopores. Anal. Chem. 2016;88(4):2502–2510.
  • McMullen A, De Haan HW, Tang JX, et al. Stiff filamentous virus translocations through solid-state nanopores. Nat Commun. 2014;5(May). DOI:10.1038/ncomms5171
  • Harms ZD, Mogensen KB, Nunes PS, et al. Nanofluidic devices with two pores in series for resistive-pulse sensing of single virus capsids. Anal Chem. 2011 Dec;83(24):9573–9578.
  • Karawdeniya BI, Bandara YMNDY, Khan AI, et al. Adeno-associated virus characterization for cargo discrimination through nanopore responsiveness. Nanoscale. 2020;12(46):23721–23731.
  • Arima A, Tsutsui M, Washio T, et al. Solid-State nanopore platform integrated with machine learning for digital diagnosis of virus infection. Anal Chem. 2021;93(1):215–227.
  • Misiunas K, Ermann N, Keyser UF. QuipuNet: convolutional neural network for single-molecule nanopore sensing. Nano Lett. 2018;18(6):4040–4045.
  • Fenton A, Pedersen AB. Community epidemiology framework for classifying disease threats. Emerg Infect Dis. 2005;11(12):1815.
  • La Rosa G, Fontana S, Di Grazia A, et al. Molecular identification and genetic analysis of norovirus genogroups I and II in water environments: comparative analysis of different reverse transcription-PCR assays. Appl Environ Microbiol. 2007;73(13):4152–4161.
  • Mori A, Pomari E, Deiana M, et al. Molecular techniques for the genomic viral RNA detection of West Nile, Dengue, Zika and Chikungunya arboviruses: a narrative review. Expert Rev. Mol. Diagn. 2021 Jun;21(6):591–612.
  • Beddow JA, Peterson IR, Heptinstall J, et al. Reconstitution of nicotinic acetylcholine receptors into gel-protected lipid membranes. Anal Chem. 2004;76(8):2261–2265.
  • Shenoy DK, Barger WR, Singh A, et al. Functional reconstitution of protein ion channels into planar polymerizable phospholipid membranes. Nano Letters. 2005;5(6):1181–1185.
  • Ding S, Gao C, Gu L-Q. Capturing single molecules of immunoglobulin and ricin with an aptamer-encoded glass nanopore. Anal Chem. 2009;81(16):6649–6655.
  • Ervin EN, White RJ, White HS. Sensitivity and signal complexity as a function of the number of ion channels in a stochastic sensor. Anal Chem. 2009;81(2):533–537.
  • Ryu S-W, Lee J-H, Kim J, et al. Comparison of two new generation influenza rapid diagnostic tests with instrument-based digital readout systems for influenza virus detection. Br. J. Biomed. Sci. 2016 Sep;73(3):115–120.
  • Hauer P, Le Ru EC, Willmott GR. Co-ordinated detection of microparticles using tunable resistive pulse sensing and fluorescence spectroscopy. Biomicrofluidics. 2015;9(1):14110.
  • Riaz N, Leung P, Barton K, et al. Adaptation of Oxford nanopore technology for hepatitis C whole genome sequencing and identification of within-host viral variants. BMC Genomics. 2021;22(1):1–12.