7,166
Views
38
CrossRef citations to date
0
Altmetric
Review

A Glimpse of the World of Volatile Fatty Acids Production and Application: A review

, , , , , , ORCID Icon & show all
Pages 1249-1275 | Received 20 Aug 2021, Accepted 16 Oct 2021, Published online: 06 Jan 2022

References

  • Taherzadeh MJ. Bioengineering to tackle environmental challenges, climate changes and resource recovery. BioEngineered. 2019;10(1):698–699.
  • Nativ P, Gräber Y, Aviezer Y, et al. A Simple and accurate approach for determining the vfa concentration in anaerobic digestion liquors, relying on two titration points and an external inorganic carbon analysis. ChemEngineering. 2021;5:2.
  • Cavinato C, Da Ros C, Pavan P, et al. Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage. Bioresour Technol. 2017;223:59–64.
  • Gameiro T, Lopes M, Marinho R, et al. Hydrolytic-acidogenic fermentation of organic solid waste for volatile fatty acids production at different solids concentrations and alkalinity addition. Water Air Soil Pollut. 2016;227: DOI:10.1007/s11270-016-3086-6.
  • Jiang J, Zhang Y, Li K, et al. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour Technol. 2013;143:525–530.
  • Sukphun P, Sittijunda S, Reungsang A. Volatile fatty acid production from organic waste with the emphasis on membrane-based recovery. Fermentation. 2021;7:3.
  • Roberts JD, Caserio MC. Basic principles of organic chemistry (WA Benjamin, Inc.). 1977.
  • Aydin S, Yesil H, Tugtas AE. Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresour Technol. 2018;250:548–555.
  • Lee WS, Chua ASM, Yeoh HK, et al. A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J. 2014;235:83–99.
  • Atasoy M, Owusu-Agyeman I, Plaza E, et al. Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges. Bioresour Technol. 2018;268:773–786.
  • Baumann I, Westermann P. Microbial production of short chain fatty acids from lignocellulosic biomass: current processes and market. Biomed Res Int. 2016;2016:1–15.
  • Bhatia SK, Yang Y-H. Microbial production of volatile fatty acids: current status and future perspectives. Rev Environ Sci Bio/Technol. 2017a;16:327–345.
  • Sáenz-Galindo A, López-López LI, Fabiola N, et al.Carboxylic Acid: Key Role in Life Sciences (IntechOpen). 2018;35:1789232783. doi:10.5772/intechopen.74654.
  • Zacharof M-P, Lovitt RB. Recovery of volatile fatty acids (VFA) from complex waste effluents using membranes. Wat Sci Technol. 2013. DOI:10.2166/wst.2013.717
  • Jankowska E, Duber A, Chwialkowska J, et al. Conversion of organic waste into volatile fatty acids–The influence of process operating parameters. Chem Eng J. 2018;345:395–403.
  • Cheah Y-K, Dosta J, Mata-Álvarez J. Enhancement of volatile fatty acids production from food waste by mature compost addition. Molecules. 2019;24:2986.
  • Tampio EA, Blasco L, Vainio MM, et al. Volatile fatty acids (VFAs) and methane from food waste and cow slurry: comparison of biogas and VFA fermentation processes. GCB Bioenergy. 2019;11:72–84.
  • Jomnonkhaow U, Uwineza C, Mahboubi A, et al. Membrane bioreactor-assisted volatile fatty acids production and in situ recovery from cow manure. Bioresour Technol. 2020;321:124456.
  • Liu H, Han P, Liu H, et al. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour Technol. 2018;260:105–114.
  • Xu Q, Liu X, Fu Y, et al. Feasibility of enhancing short-chain fatty acids production from waste activated sludge after free ammonia pretreatment: role and significance of rhamnolipid. Bioresour Technol. 2018;267:141–148.
  • Yan Y, Feng L, Zhang C, et al. Ultrasonic enhancement of waste activated sludge hydrolysis and volatile fatty acids accumulation at pH 10.0. Water Res. 2010;44:3329–3336.
  • Yuan H, Chen Y, Zhang H, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ Sci Technol. 2006;40:2025–2029.
  • Zhao J, Wang D, Li X, et al. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Water Res. 2015;78:111–120.
  • Zhou M, Yan B, Wong JWC, et al. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour Technol. 2018;248:68–78.
  • Dwidar M, Park J-Y, Mitchell RJ, et al. The future of butyric acid in industry. ScientificWorldJournal. 2012;(2012:471417.
  • Besselink H, Brouwer B, van der Burg B. Validation and regulatory acceptance of bio-based approaches to assure feedstock, water & product quality in a bio-based economy. Ind Crops Prod. 2017;106:138–145.
  • Wu Q-L, Guo W-Q, Zheng H-S, et al. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: the mechanism and microbial community analyses. Bioresour Technol. 2016;216:653–660.
  • Mostafa NA. Production and recovery of volatile fatty acids from fermentation broth. Energy Convers Manag. 1999;40(14):1543–1553.
  • Research EM (2020a). Acetic acid market report and forecast 2020-2025. https://www.expertmarketresearch.com/reports/acetic-acid-market
  • Weissermel K, Arpe H.-J. In:editors. Industrial Organic Chemistry. 4th ed, Vol. (Weinheim: Wiley-VCH). 2003 3527305785. https://doi.org/10.1002/9783527619191.ch2.
  • Yoneda N, Kusano S, Yasui M, et al. Recent advances in processes and catalysts for the production of acetic acid. Appl Catal A Gen. 2001;221(1–2):253–265.
  • Dietrich G, Weiss N, Winter J. Acetothermus paucivorans, gen. nov., sp. nov., a strictly anaerobic, thermophilic bacterium from sewage sludge, fermenting hexoses to acetate, CO2 and H2. Syst Appl Microbiol. 1988;10(2):174–179.
  • Nayak J, Pal P. Acetic acid production and purification: critical review towards process intensification. Sep Purif Rev. 2016;46: DOI:10.1080/15422119.2016.1185017.
  • Sim JH, Kamaruddin AH. Optimization of acetic acid production from synthesis gas by chemolithotrophic bacterium–Clostridium aceticum using statistical approach. Bioresour Technol. 2008;99(8):2724–2735.
  • Kadere T, Miyamoto T, Kutima PM, et al. Isolation and identification of the genera acetobacter and gluconobacter in coconut toddy (mnazi). Afr J Biotechnol. 2008;7:2963–2971.
  • Bhatia SK, Yang Y-H. Microbial production of volatile fatty acids: current status and future perspectives. Rev Environ Sci Bio/Technol. 2017b;16(2):327–345.
  • Ravinder T, Ramesh B, Seenayya G, et al. Fermentative production of acetic acid from various pure and natural cellulosic materials by Clostridium lentocellum SG6. World J Microbiol Biotechnol. 2000;16(6):507–512.
  • Nayak J, Pal P. Transforming waste cheese-whey into acetic acid through a continuous membrane-integrated hybrid process. Ind Eng Chem Res. 2013;52(8):2977–2984.
  • Li Y, He D, Niu D, et al. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation. Bioprocess Biosyst Eng. 2015;38(5):863–869.
  • Schwartz RD, Keller FA. Acetic acid production by clostridium thermoaceticum in pH-controlled batch fermentations at acidic pH. Appl Environ Microbiol. 1982;43(6):1385–1392.
  • Talabardon M, Schwitzguébel JP, Péringer P, et al. Acetic acid production from lactose by an anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor. Biotechnol Prog. 2000;16(6):1008–1017.
  • Sengun IY, Karabiyikli S. Importance of acetic acid bacteria in food industry. Food Control. 2011;22(5):647–656.
  • Zacharof M-P, Lovitt RW. Complex effluent streams as a potential source of volatile fatty acids. Waste Biomass Valorization. 2013;4(3):557–581.
  • Gandini A. Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules. 2008;41(24):9491–9504.
  • Murali N, Srinivas K, Ahring BK. Biochemical production and separation of carboxylic acids for biorefinery applications. Fermentation. 2017;3(2):22.
  • Chavez K, Hess D. A Novel method of etching copper oxide using acetic acid. J Electrochem Soc. 2001;148:G640–G643.
  • Wang HH, Mou J, Ni YH, et al. Phase behavior, interaction and properties of acetic acid lignin-containing polyurethane films coupled with aminopropyltriethoxy silane. Express Polym Lett. 2013;7(5):443–455.
  • Wang D, Duan Y, Yang Q, et al. Free ammonia enhances dark fermentative hydrogen production from waste activated sludge. Water Res. 2018;133:272–281.
  • Maxin G, Rulquin H, Glasser F. Response of milk fat concentration and yield to nutrient supply in dairy cows [article]. Animal. 2011;5(8):1299–1310.
  • Urrutia NL, Harvatine KJ. Acetate dose-dependently stimulates milk fat synthesis in lactating dairy cows [Article]. J Nutr. 2017;147(5):763–769.
  • March 2020 https://www.researchandmarkets.com/reports/5031436/propionic-acid-market-by-application-and-end-user. Propionic Acid Market by Application and End-User Industry: Global Opportunity Analysis and Industry Forecast, 2019-2026 5031436 (Research And Markets).
  • Zhang A, Yang S-T. Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochem. 2009;44(12):1346–1351.
  • Coral J, Karp SG, Porto de Souza Vandenberghe L, et al. Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources. Appl Biochem Biotechnol. 2008;151(2–3):333–341.
  • Liang Z-X, Li L, Li S, et al. Enhanced propionic acid production from Jerusalem artichoke hydrolysate by immobilized Propionibacterium acidipropionici in a fibrous-bed bioreactor. Bioprocess Biosyst Eng. 2012;35(6):915–921.
  • Gupta A, Srivastava AK. Continuous propionic acid production from cheese whey using in situ spin filter. Biotechnol Bioprocess Eng. 2001;6(1):1–5.
  • Ramsay JA, Aly Hassan MC, Ramsay BA. Biological conversion of hemicellulose to propionic acid. Enzyme Microb Technol. 1998;22(4):292–295.
  • Luna-Flores CH, Palfreyman RW, Krömer JO, et al. Improved production of propionic acid using genome shuffling. Biotechnol J. 2017;12(2):1600120.
  • Hurtaud C, Rulquin H, Vérité R. Effects of level and type of energy source (volatile fatty acids or glucose) on milk yield, composition and coagulating properties in dairy cows. Reprod Nutr Dev. 1998;38(3):315–330.
  • Lee-Rangel HA, Mendoza GD, González SS. Effect of calcium propionate and sorghum level on lamb performance [Article]. Anim Feed Sci Technol. 2012;177(3–4):237–241.
  • Liu Q, Wang C, Guo G, et al. Effects of calcium propionate on rumen fermentation, urinary excretion of purine derivatives and feed digestibility in steers [Article]. J Agric Sci. 2009;147(2):201–209.
  • McNamara JP, Valdez F. Adipose tissue metabolism and production responses to calcium propionate and chromium propionate [Article]. J Dairy Sci. 2005;88(7):2498–2507.
  • Miettinen H, Huhtanen P. Effects of the ratio of ruminal propionate to butyrate on milk yield and blood metabolites in dairy cows [Article]. J Dairy Sci. 1996;79(5):851–861.
  • Moloney AP. Growth and carcass composition in sheep offered isoenergetic rations which resulted in different concentrations of ruminal metabolites [Article]. Livestock Production Sci. 1998;56(2):157–164.
  • Rigout S, Hurtaud C, Lemoscjuet S, et al. Lactational effect of propionic acid and duodenal glucose in cows [Article]. J Dairy Sci. 2003;86(1):243–253.
  • Sanchez PH, Tracey LN, Browne-Silva J, et al. Propionibacterium acidipropionici P1691 and glucogenic precursors improve rumen fermentation of low-quality forage in beef cattle [Article]. J Anim Sci. 2014;92(4):1738–1746.
  • Grinstead DA, Barefoot SF, Jenseniin G. a heat-stable bacteriocin produced by Propionibacterium jensenii P126. Appl Environ Microbiol. 1992;58(1):215–220.
  • Ramos ÓL, Silva SI, Soares JC, et al. Features and performance of edible films, obtained from whey protein isolate formulated with antimicrobial compounds. Food Res Int. 2012;45(1):351–361.
  • Ali SH, Tarakmah A, Merchant SQ, et al. Synthesis of esters: development of the rate expression for the Dowex 50 Wx8-400 catalyzed esterification of propionic acid with 1-propanol. Chem Eng Sci. 2007;62(12):3197–3217.
  • Ihre H, Hult A, Söderlind E. Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2,2-Bis(hydroxymethyl)propionic acid and 1,1,1-Tris(hydroxyphenyl)ethane. J Am Chem Soc. 1996;118(27):6388–6395.
  • Kim N-U, Lee Y-L. Blocking-artifact detection in frequency domain for frame-rate up-conversion. Pers Ubiquitous Comput. 2018;22(1):173–184.
  • Consulting ARA (2019). Butyric acid derivatives market surpass US$ 170 Mn by 2026.
  • Playne M. Propionic and butyric acids. Comprehensive Biotechnol. 1985;3:731–759.
  • Smith JG, Yokoyama WH, German JB. Butyric acid from the diet: actions at the level of gene expression. Crit Rev Food Sci Nutr. 1998;38(4):259–297.
  • Zigová J, Šturdík E. Advances in biotechnological production of butyric acid. J Ind Microbiol Biotechnol. 2000;24(3):153–160.
  • He G-Q, Kong Q, Chen Q-H, et al. Batch and fed-batch production of butyric acid by clostridium butyricum ZJUCB. J Zhejiang Univ Sci B. 2005;6(11):1076–1080.
  • Zigova J, Sturdik E, Vandak D, et al. Butyric acid production by clostridium butyricum with integrated extraction and pertraction. Process Biochem. 1999;34(8):835–843.
  • Jiang L, Wang J, Liang S, et al. Production of butyric acid from glucose and xylose with immobilized cells of clostridium tyrobutyricum in a fibrous-bed bioreactor. Appl Biochem Biotechnol. 2010;160(2):350–359.
  • Mitchell RJ, Kim J-S, Jeon B-S, et al. Continuous hydrogen and butyric acid fermentation by immobilized clostridium tyrobutyricum ATCC 25755: effects of the glucose concentration and hydraulic retention time. Bioresour Technol. 2009;100(21):5352–5355. https://wwww.unboundmedicine.com/medline/citation/19545998/Continuous_hydrogen_and_butyric_acid_fermentation_by_immobilized_Clostridium_tyrobutyricum_ATCC_25755:_effects_of_the_glucose_concentration_and_hydraulic_retention_time_https://linkinghub.elsevier.com/retrieve/pii/S0960-85240900588-4
  • Canganella F, Wiegel J. Continuous cultivation of clostridium thermobutyricum in a rotary fermentor system. J Ind Microbiol Biotechnol. 2000;24(1):7–13.
  • Huang J, Cai J, Wang J, et al. Efficient production of butyric acid from Jerusalem artichoke by immobilized clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresour Technol. 2011;102(4):3923–3926.
  • Fayolle F, Marchal R, Ballerini D. Effect of controlled substrate feeding on butyric acid production byClostridium tyrobutyricum. J Ind Microbiol. 1990;6(3):179–183.
  • Cascone R. Biobutanol–A Replacement for Bioethanol? Chem Eng Prog. 2007;104:4.
  • Zigová J, Šturdı́k E, Vandák D, et al. Butyric acid production by clostridium butyricum with integrated extraction and pertraction. Process Biochem. 1999;34(8):835–843.
  • Michel-Savin D, Marchal R, Vandecasteele JP. Butyrate production in continuous culture of clostridium tyrobutyricum: effect of end-product inhibition. Appl Microbiol Biotechnol. 1990;33(2):127–131.
  • Clauss M, Nunn C, Fritz J, et al. Evidence for a tradeoff between retention time and chewing efficiency in large mammalian herbivores [Article]. Comp Biochem Physiol A Mol Integr Physiol. 2009;154(3):376–382.
  • Gaebel G, Martens H, Suendermann M, et al. THE EFFECT OF DIET, INTRARUMINAL pH AND OSMOLARITY ON SODIUM, CHLORIDE AND MAGNESIUM ABSORPTION FROM THE TEMPORARILY ISOLATED AND WASHED RETICULO‐RUMEN OF SHEEP [Article]. Q J Exp Physiol. 1987;72(4):501–511.
  • Guilloteau P, Zabielski R, David JC, et al. Sodium-butyrate as a growth promoter in milk replacer formula for young calves [Article]. J Dairy Sci. 2009;92(3):1038–1049.
  • Le Gall M, Gallois M, Sève B, et al. Comparative effect of orally administered sodium butyrate before or after weaning on growth and several indices of gastrointestinal biology of piglets [Article]. Br J Nutr. 2009;102(9):1285–1296.
  • Butyric acid derivatives market - global industry analysis, size, share, growth, trends, and forecast, 2018-2026, 4851757. (Research And Markets) . April 2019. https://www.researchandmarkets.com/reports/4851757/butyric-acid-derivatives-market-global-industry.
  • Sander EG, Warner RG, Harrison HN, et al. The stimulatory effect of sodium butyrate and sodium propionate on the development of rumen mucosa in the young calf [Article]. J Dairy Sci. 1959;42(9):1600–1605.
  • Shen Z, Seyfert HM, Löhrke B, et al. An energy-rich diet causes rumen papillae proliferation associated with more igf type 1 receptors and increased plasma igf-1 concentrations in young goats [conference paper]. J Nutr. 2004;134(1):11–17. https://www.scopus.com/inward/record.uri?eid=2-s2.0-9144238707&partnerID=40&md5=3e50b302ef34619d10b68388a32bbb59
  • Tamate H, McGilliard AD, Jacobson NL, et al. Effect of various dietaries on the anatomical development of the stomach in the calf [Article]. J Dairy Sci. 1962;45(3):408–420.
  • Vidyarthi VK, Kurar CK. Influence of dietary butyrate on growth rate, efficiency of nutrient utilization and cost of unit gain in Murrah buffalo (Bubalus bubalis) male calves [Article]. Asian-Australas J Anim Sci. 2001;14(4):474–478.
  • Armstrong DW, Yamazaki H. Natural flavours production: a biotechnological approach. Trends Biotechnol. 1986;4(10):264–268.
  • Shu C, Cai J, Huang L, et al. Biocatalytic production of ethyl butyrate from butyric acid with immobilized candida rugosa lipase on cotton cloth. J Mol Catal B Enzym. 2011;72(3):139–144.
  • Cao Y, Li H, Zhang J. Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-Allyl-3-Methylimidazolium Chloride (AmimCl) ionic liquid. Ind Eng Chem Res. 2011;50(13):7808–7814.
  • Riemenschneider W. Carboxylic acids, aliphatic. In: Ullmann’s Encyclopedia of Industrial Chemistry. (Wiley). 2000. 9783527306732. https://doi.org/10.1002/14356007.a05_235
  • Entin-Meer M, Rephaeli A, Yang X, et al. Butyric acid prodrugs are histone deacetylase inhibitors that show antineoplastic activity and radiosensitizing capacity in the treatment of malignant gliomas. Mol Cancer Ther. 2005;4(12):1952.
  • Future MR (February 2021). Iso-butyric acid market: information by application (animal feed, chemical intermediate, food and flavors, pharmaceuticals, perfumes and others), Region — Global Forecast till 2027.
  • Yadav GD, Lathi PS. Kinetics and mechanism of synthesis of butyl isobutyrate over immobilised lipases. Biochem Eng J. 2003;16(3):245–252.
  • Sekiguchi Y, Kamagata Y, Nakamura K, et al. Syntrophothermus lipocalidus gen. nov., sp nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol. 2000;50(2):771–779.
  • Hamsaveni DR, Prapulla SG, Divakar S. Response surface methodological approach for the synthesis of isobutyl isobutyrate. Process Biochem. 2001;36(11):1103–1109. 10.1016/S0032-9592(01)00142-X.
  • Krishna SH, Sattur AP, Karanth NG. Lipae-catalyzed synthesis of isoamyl isobutyrate - optimization using a central composite rotatable design. Process Biochem. 2001;37(1):9–16. http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=AegeanSoftware&SrcApp=NoteExpress&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000171359000002
  • Global Valeric Acid Market Outlook (Expert Market Research). 2020 https://www.expertmarketresearch.com/reports/valeric-acid-market.
  • Zhang M, Wu H, Chen H. Coupling of polyhydroxyalkanoate production with volatile fatty acid from food wastes and excess sludge. Process SafEnviron Prot. 2014;92(2):171–178.
  • Zhang W, Wei Q, Wu S, et al. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl Energy. 2014;128:175–183.
  • Styger G, Prior B, Bauer FF. Wine flavor and aroma. J Ind Microbiol Biotechnol. 2011;38(9):1145–1159.
  • Jackson RS. In: Wine Science: Principles and Applications. 3rd (Elsevier Inc.) ed. 2008. p. 978-0-12-373646-8. doi:https://doi.org/10.1016/B978-0-12-373646-8.X5001-X
  • Klimavicz JS, Corona CL, Norris EJ, et al. Monoterpenoid isovalerate esters as long-lasting spatial mosquito repellents. In: Norris EJ, Coats JR, and Gross AD, et al, editors. Advances in the Biorational Control of Medical and Veterinary Pests 1289 ACS Symposium Series (American Chemical Society). 2018. p. 205–217 9780841233591. doi:10.1021/bk-2018-1289.ch011
  • Larios A, Garcia HS, Oliart RM, et al. Synthesis of flavor and fragrance esters using Candida Antarctica lipase. Appl Microbiol Biotechnol. 2004;65(4):373–376.
  • Lee IY, Nissen SL, Rosazza JP. Conversion of beta-methylbutyric acid to beta-hydroxy-beta-methylbutyric acid by galactomyces reessii. Appl Environ Microbiol. 1997;63(11):4191–4195.
  • Carr AA, Kosley RW Jr, Van Hijfte L. (2000). Esters of (+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidi nemethanol (United States Patent No. U. S. patent.
  • Houghton JL, Kuhner PA, Carr AA. Hypertensive African Americans demonstrate increased sensitivity to microcirculatory vasoconstriction induced by ACh. Am J Hypertens. 2000;13(4Part 2):240A. BIOSIS:PREV200000316811.
  • Suerbaev KA, Gz Z, No A. Synthesis of biological active esters of the isovaleric acid by isobutylene hydroalkoxycarbonylation. J Pet Environ Biotechnol. 2013;4:1–3.
  • Rajendiran C, Nagarajan P, Venkateswarlau J. 2018. US: Synthesis of 5-azacytidine.
  • Simon KC, Williams CC, Gentry LR, et al. Effects of meal timing on anabolic hormone status and energy metabolism in neonatal holstein calves. J Dairy Sci. 2010;931:636.
  • Ensenauer R, Vockley J, Willard JM, et al. A common mutation is associated with a mild, potentially asymptomatic phenotype in patients with isovaleric acidemia diagnosed by newborn screening. Am J Hum Genet. 2004;75(6):1136–1142.
  • Wasewar KL, Shende DZ. Extraction of caproic acid using tri-n-butyl phosphate in benzene and toluene at 301 K. J Chem Eng Data. 2010;55(9):4121–4125.
  • Khor WC, Andersen S, Vervaeren H, et al. Electricity-assisted production of caproic acid from grass. Biotechnol Biofuels. 2017;10(1):180.
  • Adeodato Vieira MG, Da Silva MA, Dos Santos LO, et al. Natural-based plasticizers and biopolymer films: a review. Eur Polym J. 2011;47(3):254–263.
  • Rotta J, Ozorio RA, Kehrwald AM, et al. Parameters of color, transparency, water solubility, wettability and surface free energy of chitosan/hydroxypropyl methylcellulose (HPMC) films plasticized with sorbitol. Mater Sci Eng C Biomim Supramol Syst. 2009;29(2SI):619–623.
  • Huang CB, Alimova Y, Myers TM, et al. Short- and medium-chain fatty acids exhibit antimicrobial activity for oral microorganisms. Arch Oral Biol. 2011;56(7):650–654.
  • Van Immerseel F, De Buck J, Boyen F, et al. Medium-chain fatty acids decrease colonization and invasion through hilA suppression shortly after infection of chickens with salmonella enterica serovar enteritidis. Appl Environ Microbiol. 2004;70(6):3582–3587.
  • Serhan M, Mattar J, Debs L. Concentrated yogurt (Labneh) made of a mixture of goats’ and cows’ milk: physicochemical, microbiological and sensory analysis. Small Ruminant Res. 2016;138:46–52.
  • Yan S, Wang S, Wei G, et al. Investigation of the main parameters during the fermentation of Chinese luzhou-flavour liquor. J Inst Brewing. 2015;121(1):145–154.
  • Zentek J, Buchheit-Renko S, Ferrara F, et al. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in. Anim Health Res Rev. 2011;12(1):83–93. BIOSIS:PREV201100454528piglets
  • Refat MS, El-Korashy SA, Kumar DN, et al. FTIR, magnetic, H-1 NMR spectral and thermal studies of some chelates of caproic acid: inhibitory effect on different kinds of bacteria. Spectrochim Acta A Mol Biomol Spectrosc. 2008;70(1):217–233.
  • Saeed A, Haroon M, Muhammad F, et al. Advances in transition-metal-catalyzed synthesis of 3-substituted isocoumarins. J Organomet Chem. 2017;34:88–103.
  • Ohyama Y, Hara S, Masaki S. USE OF CAPROIC ACID TO PREVENT AEROBIC DETERIORATION OF SILAGES AFTER OPENING, WITH SPECIAL REFERENCE TO AMOUNTS AND TIME OF APPLICATION. J Sci Food Agric. 1977;28(4):369–374.
  • Urban C, Xu J, Straeuber H, et al. Production of drop-in fuels from biomass at high selectivity by combined microbial and electrochemical conversion. Energy Environ Sci. 2017;10(10):2231–2244.
  • Caproic Acid - Global Market Trajectory & Analytics, 5302114. (Research And Markets). April 2021. https://www.researchandmarkets.com/reports/5302114/caproic-acid-global-market-trajectory-and.
  • Wainaina S, Lukitawesa L, Kumar Awasthi M, et al. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered. 2019;10(1):437–458.
  • Kleerebezem R, van Loosdrecht MC. Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol. 2007;18(3):207–212.
  • Lu Y, Slater FR, Mohd-Zaki Z, et al. Impact of operating history on mixed culture fermentation microbial ecology and product mixture. Water Sci Technol. 2011;64(3):760–765.
  • Dong L, Cao G, Guo X, et al. Efficient biogas production from cattle manure in a plug flow reactor: a large scale long term study. Bioresour Technol. 2019;278:450–455.
  • Singh AD, Upadhyay A, Shrivastava S, et al. Life-cycle assessment of sewage sludge-based large-scale biogas plant. Bioresour Technol. 2020;309:123373.
  • Wang B-Y, Zhang N, Li Z-Y, et al. Selective separation of acetic and hexanoic acids across polymer inclusion membrane with ionic liquids as carrier. Int J Mol Sci. 2019;20(16):3915.
  • Westerholm M, Liu T, Schnürer A. Comparative study of industrial-scale high-solid biogas production from food waste: process operation and microbiology. Bioresour Technol. 2020;304:122981.
  • Lukitawesa PR, Millati J, Sárvári-Horváth, I R, et al. Factors influencing volatile fatty acids production from food wastes via anaerobic digestion. Bioengineered. 2020;11(1):39–52.
  • Magdalena JA, Greses S, González-Fernández C. Impact of organic loading rate in volatile fatty acids production and population dynamics using microalgae biomass as substrate. Sci Rep. 2019;9(1):18374.
  • Tampio EA, Blasco L, Vainio MM, et al. Volatile fatty acids (VFAs) and methane from food waste and cow slurry: comparison of biogas and VFA fermentation processes. Glob Change Biol Bioenergy. 2019;11(1):72–84.
  • Tezel U, Tandukar M, Pavlostathis SG Anaerobic Biotreatment of Municipal Sewage Sludge. Comprehensive Biotechnology. Vol. 6 (Elsevier). 2011. p. 447–461 9780080885049 doi:10.1016/B978-0-08-088504-9.00329-9.
  • Zhang Y, Li J, Liu F, et al. Reduction of Gibbs free energy and enhancement of methanosaeta by bicarbonate to promote anaerobic syntrophic butyrate oxidation. Bioresour Technol. 2018;267:209–217.
  • Anderson AJ, Dawes EA. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev. 1990;54(4):450.
  • Arcos-Hernandez M, Montano-Herrera L, Janarthanan OM, et al. Value-added bioplastics from services of wastewater treatment. Water Pract Technol. 2015;10:546.
  • Raza ZA, Abid S, Banat IM. Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegrad. 2018;126:45–56.
  • Albuquerque MGE, Martino V, Pollet E, et al. Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: effect of substrate composition and feeding regime on PHA productivity, composition and properties. J Biotechnol. 2011;151(1):66–76.
  • Kim BS. Production of poly(3-hydroxybutyrate) from inexpensive substrates. Enzyme Microb Technol. 2000;27(10):774–777.
  • Anjum A, Zuber M, Zia KM, et al. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol. 2016;89:161–174.
  • Girotto F, Alibardi L, Cossu R. Food waste generation and industrial uses: a review. Waste Manage. 2015;45:32–41.
  • Kalia V, Raizada N, Sonakya V. Bioplastics. Journal of Scientific & Industrial Research. 2000; 59: 433–445 .
  • Reis MA, Serafim LS, Lemos PC, et al. Production of polyhydroxyalkanoates by mixed microbial cultures. Bioprocess Biosyst Eng. 2003;25(6):377–385.
  • Albuquerque MGE, Eiroa M, Torres C, et al. Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. J Biotechnol. 2007;130:411–421.
  • Dias JML, Lemos PC, Serafim LS, et al. Recent advances in polyhydroxyalkanoate production by mixed aerobic cultures: from the substrate to the final product. Macromol Biosci. 2006;6(11):885–906.
  • Dionisi D, Majone M, Papa V, et al. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Biotechnol Bioeng. 2004;85(6):569–579.
  • Reis M, Albuquerque M, Villano M, et al. 6.51 - mixed culture processes for polyhydroxyalkanoate production from agro-industrial surplus/wastes as feedstocks Murray, Moo-Young. In:Comprehensive Biotechnology. US: Academic Press; 2011. p. 669–683. ISBN: 978-0-08-088504-9. https://doi.org/10.1016/B978-0-08-088504-9.00464-5.
  • Chen Z, Huang L, Wen Q, et al. Efficient polyhydroxyalkanoate (PHA) accumulation by a new continuous feeding mode in three-stage mixed microbial culture (MMC) PHA production process. J Biotechnol. 2015;209:68–75.
  • Chua AS, Takabatake H, Satoh H, et al. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: effect of pH, sludge retention time (SRT), and acetate concentration in influent. Water Res. 2003;37(15):3602–3611.
  • Jiang Y, Marang L, Tamis J, et al. Waste to resource: converting paper mill wastewater to bioplastic. Water Res. 2012;46(17):5517–5530.
  • Jiang Y, Hebly M, Kleerebezem R, et al. Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production. Water Res. 2011;45(3):1309–1321.
  • Venkata Mohan S, Venkateswar Reddy M. Optimization of critical factors to enhance polyhydroxyalkanoates (PHA) synthesis by mixed culture using Taguchi design of experimental methodology. Bioresour Technol. 2013;128:409–416.
  • Luo K, Pang Y, Yang Q, et al. A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications. Environ Sci Pollut Res. 2019;26(14):13984–13998.
  • Frison N, Katsou E, Malamis S, et al. Development of a novel process integrating the treatment of sludge reject water and the production of polyhydroxyalkanoates (PHAs). Environ Sci Technol. 2015;49(18):10877–10885.
  • Raheem A, Sikarwar VS, He J, et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a review. Chem Eng J. 2018;337:616–641.
  • Tyagi VK, Lo S-L. Sludge: a waste or renewable source for energy and resources recovery? Renewable Sustainable Energy Rev. 2013;25:708–728.
  • Tian P-Y, Shang L, Ren H, et al. Biosynthesis of polyhydroxyalkanoates: current research and development. Afr J Biotechnol. 2009;8:709–714.
  • Pittmann T, Steinmetz H. Polyhydroxyalkanoate production on waste water treatment plants: process scheme, operating conditions and potential analysis for German and European municipal waste water treatment plants. Bioengineering. 2017;4:54.
  • Cho HU, Park JM. Biodiesel production by various oleaginous microorganisms from organic wastes. Bioresour Technol. 2018;256:502–508.
  • Fei Q, Chang HN, Shang L, et al. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by cryptococcus albidus for biodiesel production. Bioresour Technol. 2011;102(3):2695–2701.
  • Llamas M, Magdalena JA, González-Fernández C, et al. Volatile fatty acids as novel building blocks for oil-based chemistry via oleaginous yeast fermentation. Biotechnol Bioeng. 2020;117(1):238–250.
  • Lim S-J, Kim BJ, Jeong C-M, et al. Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresour Technol. 2008;99(16):7866–7874.
  • Sans C, Mata-Alvarez J, Cecchi F, et al. Volatile fatty acids production by mesophilic fermentation of mechanically-sorted urban organic wastes in a plug-flow reactor. Bioresour Technol. 1995;51(1):89–96.
  • Jin C, Yao M, Liu H, et al. Progress in the production and application of n-butanol as a biofuel. Renew Sust Energ Rev. 2011;15(8):4080–4106.
  • Gong Z, Zhou W, Shen H, et al. Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates. Bioresour Technol. 2016;207:102–108.
  • Madani M, Enshaeieh M, Abdoli A. Single cell oil and its application for biodiesel production. Process SafEnviron Prot. 2017;111:747–756.
  • Beopoulos A, Cescut J, Haddouche R, et al. Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res. 2009;48(6):375–387.
  • Chang H, Kim N-J, Kang J, et al. Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioprocess Eng. 2010;15(1):1–10.
  • Liu J, Huang X, Chen R, et al. Efficient bioconversion of high-content volatile fatty acids into microbial lipids by cryptococcus curvatus ATCC 20509. Bioresour Technol. 2017;239:394–401.
  • Gao R, Li Z, Zhou X, et al. Enhanced lipid production by yarrowia lipolytica cultured with synthetic and waste-derived high-content volatile fatty acids under alkaline conditions. Biotechnol Biofuels. 2020;13:3.
  • Singhania RR, Patel AK, Christophe G, et al. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour Technol. 2013;145:166–174.
  • Tuna E, Kargi F, Argun H. Hydrogen gas production by electrohydrolysis of volatile fatty acid (VFA) containing dark fermentation effluent. Int J Hydrogen Energy. 2009;34(1):262–269.
  • Karapinar Kapdan I, Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol. 2006;38:569–582.
  • Levin DB, Pitt L, Love M (2003). Biohydrogen production: prospects and limitations to practical application. Towards a greener world: hydrogen and fuel cells conference and trade show, Canada.
  • Fedorov A, Tsygankov A, Rao K, et al. Hydrogen photoproduction by Rhodobacter sphaeroides immobilised on polyurethane foam. Biotechnol Lett. 1998;20:1007–1009.
  • Uyar B, Eroglu I, Yücel M, et al. Photofermentative hydrogen production from volatile fatty acids present in dark fermentation effluents. Int J Hydrogen Energy. 2009;34(10):4517–4523.
  • Kadier A, Kalil MS, Mohamed A, et al. Microbial Electrolysis Cells (MECs) as Innovative Technology for Sustainable Hydrogen Production: fundamentals and Perspective Applications. Hoboken NJ: John Wiley & Sons, Inc; 2017. p. 407–457.
  • Ahn Y, Im S, Chung J-W. Optimizing the operating temperature for microbial electrolysis cell treating sewage sludge. Int J Hydrogen Energy. 2017;42(45):27784–27791.
  • Kyazze G, Popov A, Dinsdale R, et al. Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell. Int J Hydrogen Energy. 2010;35(15):7716–7722.
  • Cho S-H, Kim T, Baek K, et al. The use of organic waste-derived volatile fatty acids as raw materials of C4-C5 bioalcohols. J Clean Prod. 2018;201:14–21.
  • Ebert J. Biobutanol: the next big biofuel? Biomass Mag. 2020. http://biomassmagazine.com/articles/1605/biobutanol-the-next-big-biofuel?.
  • Wu M, Wang M, Liu J, et al. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel. Biotechnol Prog. 2008;24(6):1204–1214.
  • Mohd Yusoff MNA, Mohd Zulkifli NW, Masum BM, et al. Feasibility of bioethanol and biobutanol as transportation fuel in spark-ignition engine: a review. RSC Adv. 2015. DOI:10.1039/C5RA12735A
  • Tchobanoglous G, Burton FL, Stensel HD, et al. Wastewater engineering: treatment and reuse. US: McGraw-Hill; 2003.
  • Steinbusch KJJ, Hamelers HVM, Buisman CJN. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Res (Oxford). 2008;42(15):4059–4066.
  • Smith DP, McCarty PL. Reduced product formation following perturbation of ethanol- and propionate-fed methanogenic CSTRs. Biotechnol Bioeng. 1989;34(7):885–895.
  • Bio-butanol market size to reach $17.78 billion by 2022. (2015). Retrieved 27 Aug from https://www.grandviewresearch.com/press-release/global-bio-butanol-market
  • Henze M. Capabilities of biological nitrogen removal processes from wastewater. Water Sci Technol. 1991;23(4–6):669–679.
  • Sinaga N, Mel M, Pakpahan R, et al. Influence of volatile fatty acid concentration on biogas production in synthropic anaerobic digestion. Journal of Advanced Research in Biofuel and Bioenergy. 2018;1:26–43.
  • Felchner-Zwirello M (2014). Propionic Acid Degradation By Syntrophic Bacteria During Anaerobic Biowaste Digestion [Ph.D. thesis, 10.5445/KSP/1000037825
  • Samsoon PALNS, Dold P. L LRE, M. G. V R. (1988). Pelletization in upflow anaerobic sludge bed reactors. Proceedings of the 5th International Symposium on Anaerobic Digestion, Bologna, Italy.
  • Gijzen HJ, Zwart KB, Teunissen MJ, et al. Anaerobic digestion of cellulose fraction of domestic refuse by means of rumen microorganisms. Biotechnol Bioeng. 1988;32(6):749–755.
  • Ren N, Liu M, Wang A, et al. [Organic acids conversion in methanogenic-phase reactor of the two-phase anaerobic process]. Huan Jing Ke Xue. 2003;24(4):89–93.
  • Stronach SM. Anaerobic Digestion Processes in Industrial Wastewater Treatment. 1st. ed. 1986. ed. Berlin, Germany: Springer Berlin Heidelberg; 1986. DOI:10.1007/978-3-642-71215-9.
  • Wang Y. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenergy. 2009;33(5):848–853. 2033 no. 2005
  • Gidstedt S (2017). Production of volatile fatty acids by hydrolysing sludge from Sjölunda WWTP [Master's thesis, http://lup.lub.lu.se/student-papers/record/8921197
  • Æsøy A, Ødegaard H. Nitrogen removal efficiency and capacity in biofilms with biologically hydrolysed sludge as a carbon source. Water Sci Technol. 1994;30(6):63–71.
  • Sathasivan A. Biological phosphorus removal processes for wastewater treatment Dooge, James. In: Water and wastewater treatment technologies. Oxford (UK): Encyclopedia of Life Support Systems (EOLSS); 2009. p. 1–23.
  • Mao Y, Graham DW, Tamaki H, et al. Dominant and novel clades of candidatus accumulibacter phosphatis in 18 globally distributed full-scale wastewater treatment plants. Sci Rep. 2015;5:11857.
  • Shen N, Zhou Y. Enhanced biological phosphorus removal with different carbon sources. Appl Microbiol Biotechnol. 2016;100(11):4735–4745.
  • Moser-Engeler R, Udert KM, Wild D, et al. Products from primary sludge fermentation and their suitability for nutrient removal. Water Sci Technol. 1998;38(1):265.
  • Rahmani H, Rols J, Capdeville B, et al. Nitrite removal by a fixed culture in a submerged granular biofilter. Water Res. 1995;29(7):1745–1753.
  • Bernat K, Kulikowska D, Godlewski M. Crude glycerol as a carbon source at a low COD/N ratio provides efficient and stable denitritation. Desalin Water Treat. 2016;57(42):19632–19641.
  • Grady CL Jr, Daigger GT, Love NG, et al. Biological wastewater treatment. Boca Raton, Florida: CRC press; 2011.
  • Parchami M, Wainaina S, Mahboubi A, et al. MBR-Assisted VFAs production from excess sewage sludge and food waste slurry for sustainable wastewater treatment. Appl Sci (Switzerland). 2020;10:8.
  • Elefsiniotis P, Li D. The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochem Eng J. 2006;28(2):148–155.
  • Elefsiniotis P, Wareham DG. Utilization patterns of volatile fatty acids in the denitrification reaction. Enzyme Microb Technol. 2007a;41(1–2):92–97.
  • Elefsiniotis P, Wareham DG, Smith MO. Use of volatile fatty acids from an acid-phase digester for denitrification. J Biotechnol. 2004;114(3):289–297.
  • Fass S, Ganaye V, Urbain V, et al. Volatile fatty acids as organic carbon sources in denitrification. Environ Technol (United Kingdom). 1994;15(5):459–467.
  • Elefsiniotis P, Wareham DG. Utilization patterns of volatile fatty acids in the denitrification reaction. Enzyme Microb Technol. 2007b;41(1):92–97.
  • Wu C-Y, Peng Y-Z, Li X-L, et al. Effect of carbon source on biological nitrogen and phosphorus removal in an anaerobic-anoxic-oxic (A2 O) process. J Environ Eng. 2010;136(11):1248–1254.
  • van Loosdrecht M, Oehmen A, Hooijmans C, Brdjanovic, D, Gijzen, H, Yuan, Z, Lopez-Vazquez, C . Modelling the PAO-GAO competition: Effects of carbon source, pH and temperature, et al, editors. 2009. Water research (Oxford).Vol.43, p. 2947–2949. doi:10.1016/j.watres.2009.03.043.
  • Zhang C, Chen Y, Randall AA, et al. Anaerobic metabolic models for phosphorus- and glycogen-accumulating organisms with mixed acetic and propionic acids as carbon sources. Water Res. 2008;42(14):3745–3756.
  • Llamas B, Ortega MF, Barthelemy G, et al. Development of an efficient and sustainable energy storage system by hybridization of compressed air and biogas technologies (BIO-CAES). Energy Convers Manag. 2020;210:112695.
  • Wainaina S, Awasthi MK, Sarsaiya S, et al. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour Technol. 2020;301:122778.
  • Liedl BE, Bombardiere J, Chatfield JM. Fertilizer potential of liquid and Solid effluent from thermophilic anaerobic digestion of poultry waste. Water Sci Technol. 2006;53(8):69–79.
  • Mukhuba M, Roopnarain A, Adeleke R, et al. Comparative assessment of bio-fertiliser quality of cow dung and anaerobic digestion effluent. Cogent Food Agric. 2018;4(1):1435019. 1435019 (1435011 pp.)-1435019 (1435011 pp.). INSPEC: 18693414
  • Jimenez-Lopez EC, Lopez-Ocana G, Bautista-Margulis RG, et al. Wastewater treatment by constructed wetlands with thalia geniculata and paspalum paniculatum in a tropical system of Mexico. Int J Sustainable Dev Planning. 2017;12(1):42–50. CABI: 20173074032.
  • Pincam T, Brix H, Jampeetong A. Treatment of anaerobic digester effluent using acorus calamus: effects on plant growth and tissue composition. PLANTS-BASEL. 2018;7(362). DOI:10.3390/plants7020036
  • Gong X, Li S, Sun X, et al. Maturation of green waste compost as affected by inoculation with the white-rot fungi trametes versicolor and phanerochaete chrysosporium. Environ Technol. 2017;38(7):872–879.
  • Zacharof M-P, Mandale SJ, Oatley-Radcliffe D, et al. Nutrient recovery and fractionation of anaerobic digester effluents employing pilot scale membrane technology. JOURNAL OF WATER PROCESS ENGINEERING. 2019;31:100846.
  • Khoshnevisan B, Duan N, Tsapekos P, et al. A critical review on livestock manure biorefinery technologies: sustainability, challenges, and future perspectives. Renewable Sustainable Energy Rev. 2021;135:110033.
  • Pivato A, Vanin S, Raga R, et al. Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: an ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manage (Elmsford). 2016;49:378–389.
  • Sigurnjak I, Michels E, Crappé S, et al. Does acidification increase the nitrogen fertilizer replacement value of bio‐based fertilizers? J Plant Nutr Soil Sci. 2017;180(6):800–810.
  • Walsh JJ, Jones DL, Chadwick DR, et al. Repeated application of anaerobic digestate, undigested cattle slurry and inorganic fertilizer N: impacts on pasture yield and quality. Grass Forage Sci. 2018;73(3):758–763.
  • Pincam T, Brix H, Jampeetong A. Growth performance of tropical wetland species (Cyperus involucratus rottb. and thalia geniculata L.) in anaerobic digester effluent and their water treatment efficiency. Ecol Eng. 2020;143:105667.
  • Peng W, Zeng Y, Shi Q, et al. Responses of rice yield and the fate of fertilizer nitrogen to soil organic carbon. Plant Soil Environ. 2017;63(9):416–421.
  • Yasar A, Rasheed R, Tabinda AB, et al. Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry. Renewable Sustainable Energy Rev. 2017;67:364–371.
  • Fernandes F, Silkina A, Fuentes-Grunewald C, et al. Valorising nutrient-rich digestate: dilution, settlement and membrane filtration processing for optimisation as a waste-based media for microalgal cultivation. Waste Manage. 2020;118:197–208.
  • Tsapekos P, Khoshnevisan B, Alvarado-Morales M, et al. Environmental impacts of biogas production from grass: role of co-digestion and pretreatment at harvesting time. Appl Energy. 2019;252:113467.
  • Nordahl SL, Devkota JP, Amirebrahimi J, et al. Life-Cycle greenhouse gas emissions and human health trade-offs of organic waste management strategies. Environ Sci Technol. 2020;54(15):9200–9209.
  • Dai S, Li Q. 李庆卫. Removal efficiency of eight plants in two different eutrophic water. J North-East For Univ. 2016;44:80–83. 1000-5382(2016)44:7<80:8ZZWD2>2.0.TX;2-47. CSCD: 5748947.
  • Zhang C-B, Liu W-L, Pan X-C, et al. Comparison of effects of plant and biofilm bacterial community parameters on removal performances of pollutants in floating Island systems. Ecol Eng. 2014;73:58–63.
  • Almuktar SAAA, Abed SN, Scholz M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: a review. Environ Sci Pollut Res. 2018;25(24):23595–23623. CABI: 20193370800
  • Li Y, Zhu G, Ng WJ, et al. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. SciTotal Environ. 2014;468:908–932.
  • Gulzar M, Mahmood K, Zahid R, et al. The effect of particle size on the dispersion and wear protection ability of MoS2 particles in polyalphaolefin and trimethylolpropane ester. Proc Inst Mech Eng, Part J: J Eng Tribol. 2018;232(8):987–998.
  • Gao J, Liu L, Ma N, et al. Effect of ammonia stress on carbon metabolism in tolerant aquatic plant-Myriophyllum aquaticum. Environ Pollut. 2020;263:114412A.
  • Jampeetong A, Brix H. Effects of NH4+ concentration on growth, morphology and NH4+ uptake kinetics of Salvinia natans. Ecol Eng. 2009;35(5):695–702.
  • Vaneeckhaute C, Lebuf V, Michels E, et al. Nutrient recovery from digestate: systematic technology review and product classification. Waste Biomass Valorization. 2017;8(1):21–40.
  • Anjum R, Grohmann E, Krakat N. Anaerobic digestion of nitrogen rich poultry manure: impact of thermophilic biogas process on metal release and microbial resistances. CHEMOSPHERE. 2017;168:1637–1647.
  • Bi S, Westerholm M, Qiao W, et al. Metabolic performance of anaerobic digestion of chicken manure under wet, high solid, and dry conditions. Bioresour Technol. 2020;296:122342.
  • Yin D-M, Westerholm M, Qiao W, et al. An explanation of the methanogenic pathway for methane production in anaerobic digestion of nitrogen-rich materials under mesophilic and thermophilic conditions. Bioresour Technol. 2018;264:42–50.
  • Zhang M, Lawlor PG, Wu G, et al. Partial nitrification and nutrient removal in intermittently aerated sequencing batch reactors treating separated digestate liquid after anaerobic digestion of pig manure. Bioprocess Biosyst Eng. 2011;34(9):1049–1056.
  • Hallas JF, Mackowiak CL, Wilkie AC, et al. Struvite phosphorus recovery from aerobically digested municipal wastewater. SUSTAINABILITY. 2019;11:3762.
  • Muhmood A, Wu S, Lu J, et al. Nutrient recovery from anaerobically digested chicken slurry via struvite: performance optimization and interactions with heavy metals and pathogens. SciTotal Environ. 2018;635:1–9.
  • Wu Z, Zou S, Zhang B, et al. Forward osmosis promoted in-situ formation of struvite with simultaneous water recovery from digested swine wastewater. Chem Eng J. 2018;342:274–280.
  • Yin D-M, Taherzadeh MJ, Lin M, et al. Upgrading the anaerobic membrane bioreactor treatment of chicken manure by introducing in -situ ammonia stripping and hyper-thermophilic pretreatment. Bioresour Technol. 2020;310:123470.
  • Debowski M, Szwaja S, Zielinski M, et al. The Influence of anaerobic digestion effluents (ADEs) used as the nutrient sources for chlorella sp cultivation on fermentative biogas production. Waste Biomass Valorization. 2017;8(4):1153–1161.
  • Nwoba EG, Mickan BS, Moheimani NR. Chlorella sp. growth under batch and fed-batch conditions with effluent recycling when treating the effluent of food waste anaerobic digestate. J Appl Phycol. 2019;31(6):3545–3556.
  • Zielinski M, Debowski M, Szwaja S, et al. Anaerobic digestion effluents (ADEs) treatment coupling with chlorella sp microalgae production. Water Environ Res. 2018;90(2):155–163.
  • Panuccio MR, Papalia T, Attina E, et al. Use of digestate as an alternative to mineral fertilizer: effects on growth and crop quality. Arch Agron Soil Sci. 2019;65(5):700–711.
  • Tamaki S, Hidaka T, Mizuno T, et al. Anaerobic digestion of oxidation ditch sludge at low temperatures with hyperthermophilic pretreatment. J Water Environ Technol. 2019;17(2):67–75. BIOSIS:PREV201900474446