4,863
Views
26
CrossRef citations to date
0
Altmetric
Review

Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations

ORCID Icon, , , , , , ORCID Icon, , , ORCID Icon & show all
Pages 9531-9549 | Received 06 Sep 2021, Accepted 19 Oct 2021, Published online: 07 Dec 2021

References

  • Nagarajan D, Varjani S, Lee DJ, et al. Sustainable aquaculture and animal feed from microalgae - nutritive value and techno-functional components. Renewable Sustainable Energy Rev. 2021;150:111549.
  • Nguyen -T-T, Bui X-T, Ngo HH, et al. Nutrient recovery and microalgae biomass production from urine by membrane photobioreactor at low biomass retention times. SciTotal Environ. 2021;785:147423.
  • Nguyen TTD, Bui XT, Nguyen TT, et al. Co-culture of microalgae-activated sludge in sequencing batch photobioreactor systems: effects of natural and artificial lighting on wastewater treatment. Bioresour Technol. 2022;343:126091.
  • Devda V, Chaudhary K, Varjani S, et al. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered. 2021;12(1):4697–4718.
  • Lage S, Toffolo A, Gentili FG. Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden. Chemosphere. 2021;276:130122.
  • Oyebamiji OO, Boeing WJ, Holguin FO, et al. Green microalgae cultured in textile wastewater for biomass generation and biodetoxification of heavy metals and chromogenic substances. Bioresour Technol Rep. 2019;7:100247.
  • Shen Q-H, Gong Y-P, Fang W-Z, et al. Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresour Technol. 2015;193:68–75.
  • Wang C-H, Lee Y-H, Kuo H-T, et al. Dielectrophoretically-assisted electroporation using light-activated virtual microelectrodes for multiple DNA transfection. Lab Chip. 2014;14(3):592–601.
  • Wang L, Min M, Li Y, et al. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol. 2010;162(4):1174–1186.
  • Misra CS, Appukuttan D, Kantamreddi VSS, et al. Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes. Bioengineered. 2012;3(1):44–48.
  • Ji L, Xie S, Feng J, et al. Heavy metal uptake capacities by the common freshwater green algae Cladophora fracta. J Appl Phycol. 2012;24(4):979–983.
  • Wong J, Wong Y, Tam N. Nickel biosorption by two chlorella species, C. Vulgaris (a commercial species) and C. Miniata (a local isolate). Bioresour Technol. 2000;73(2):133–137.
  • Pradhan D, Sukla LB, Mishra BB, et al. Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. J Clean Prod. 2019;209:617–629.
  • Rezaei H. Biosorption of chromium by using Spirulina sp. Arabian J Chem. 2016;9(6):846–853.
  • Sibi G. Biosorption of chromium from electroplating and galvanizing industrial effluents under extreme conditions using Chlorella vulgaris. Green Energy Environ. 2016;1(2):172–177.
  • Chan A, Salsali H, McBean E. Heavy metal removal (copper and zinc) in secondary effluent from wastewater treatment plants by microalgae. ACS Sustain Chem Eng. 2014;2(2):130–137.
  • Malakootian M, Yousefi Z, Limoni ZK. Removal of lead from battery industry wastewater by Chlorella vulgaris as green micro-algae (case study: Kerman, Iran). Desalin Water Treat. 2019;141:248–255.
  • Shanab S, Essa A, Shalaby E. Bioremoval capacity of three heavy metals by some microalgae species (Egyptian Isolates). Plant Signal Behav. 2012;7(3):392–399.
  • Fard GH, Mehrnia MR. Investigation of mercury removal by Micro-Algae dynamic membrane bioreactor from simulated dental waste water. J Environ Chem Eng. 2017;5(1):366–372.
  • Kumar M, Singh AK, Sikandar M. Biosorption of Hg (II) from aqueous solution using algal biomass: kinetics and isotherm studies. Heliyon. 2020;6(1):e03321.
  • Chong A, Wong Y, Tam N. Performance of different microalgal species in removing nickel and zinc from industrial wastewater. Chemosphere. 2000;41(1–2):251–257.
  • Gagneux-Moreaux S, Cosson RP, Bustamante P, et al. Growth and metal uptake of microalgae produced using salt groundwaters from the Bay of Bourgneuf. Aquat Living Resour. 2006;19(3):247–255.
  • Han X, Wong YS, Wong MH, et al. Feasibility of using microalgal biomass cultured in domestic wastewater for the removal of chromium pollutants. Water Environ Res. 2008;80(7):647–653.
  • Sulaymon AH, Mohammed AA, Al-Musawi TJ. Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environ Sci Pollut Res. 2013;20(5):3011–3023.
  • Eladel H, Abomohra AE-F, Battah M, et al. Evaluation of Chlorella sorokiniana isolated from local municipal wastewater for dual application in nutrient removal and biodiesel production. Bioprocess Biosyst Eng. 2019;42(3):425–433.
  • Cho HU, Kim YM, Park JM. Enhanced microalgal biomass and lipid production from a consortium of indigenous microalgae and bacteria present in municipal wastewater under gradually mixotrophic culture conditions. Bioresour Technol. 2017;228:290–297.
  • Varjani S, Pandey A, Upasani VN. Petroleum sludge polluted soil remediation: integrated approach involving novel bacterial consortium and nutrient application. SciTotal Environ. 2021a;763:142934.
  • Yan A, Wang Y, Tan SN, et al. Phytoremediation: a promising approach for revegetation of heavy metal-polluted Land. Front Plant Sci. 2020;11:359.
  • Mousavi S, Najafpour GD, Mohammadi M, et al. Cultivation of newly isolated microalgae Coelastrum sp. in wastewater for simultaneous CO 2 fixation, lipid production and wastewater treatment. Bioprocess Biosyst Eng. 2018;41(4):519–530.
  • Li Y, Yang X, Geng B. Preparation of immobilized sulfate-reducing bacteria-microalgae beads for effective bioremediation of copper-containing wastewater. Water Air Soil Pollut. 2018;229(3):1–13.
  • Franklin N, Adams M, Stauber J, et al. Development of an improved rapid enzyme inhibition bioassay with marine and freshwater microalgae using flow cytometry. Arch Environ Contam Toxicol. 2001;40(4):469–480.
  • Kumar R, Goyal D. Waste water treatment and metal (Pb 2+, Zn 2+) removal by microalgal based stabilization pond system. Indian J Microbiol. 2010;50(S1):34–40.
  • Gaur VK, Sharma P, Gaur P, et al. Sustainable mitigation of heavy metals from effluents: toxicity and fate with recent technological advancements. Bioengineered. 2021;12(1):7297–7313.
  • Vo TDH, Bui XT, Dang BT, et al. Influence of organic loading rates on treatment performance of membrane bioreactor treating tannery wastewater. Environ Technol Innovation. 2021;24:101810.
  • Rajalakshmi A, Silambarasan T, Dhandapani R. Small scale photo bioreactor treatment of tannery wastewater, heavy metal biosorption and CO2 sequestration using microalgae Chlorella sp.: a biodegradation approach. Appl Water Sci. 2021;11(7):1–12.
  • Ahirwar A, Meignen G, Khan MJ, et al. Light modulates transcriptomic dynamics upregulating astaxanthin accumulation in Haematococcus: a review. Bioresour Technol. 2021b;340:125707.
  • Gupta AK, Seth K, Maheshwari K, et al. Biosynthesis and extraction of high-value carotenoid from algae. Front Biosci (Landmark Ed). 2021;26(6):171–190.
  • López-Pacheco IY, Carrillo-Nieves D, Salinas-Salazar C, et al. Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment. SciTotal Environ. 2019;676:356–367.
  • Zambrano J, García-Encina PA, Hernández F, et al. Removal of a mixture of veterinary medicinal products by adsorption onto a Scenedesmus almeriensis microalgae-bacteria consortium. Journal of Water Process Engineering. 2021;43:102226.
  • Abirama V, Mohamed RMSR, Al-Gheethi A, et al. Meat processing wastewater Phycoremediation by Botryococcus sp.: a biokinetic study and a techno-economic analysis. Sep Sci Technol. 2021;56(3):577–591.
  • Harshkova D, Majewska M, Pokora W, et al. Diclofenac and atrazine restrict the growth of a synchronous Chlamydomonas reinhardtii population via various mechanisms. Aquatic Toxicol. 2021;230:105698.
  • Abdel-Raouf N, Sholkamy EN, Bukhari N, et al. Bioremoval capacity of Co+ 2 using Phormidium tenue and Chlorella vulgaris as biosorbents. Environ Res. 2021;204:111630.
  • Su C, Sun X, Mu Y, et al. Multilayer calcium alginate beads containing Diatom biosilica and bacillus subtilis as microecologics for sewage treatment. Carbohydr Polym. 2021;256:117603.
  • Tornés E, Mor J-R, Mandaric L, et al. Diatom responses to sewage inputs and hydrological alteration in Mediterranean streams. Environ Pollut. 2018;238:369–378.
  • Adesra A, Srivastava VK, Varjani S. Valorization of dairy wastes: integrative approaches for value added products. Indian J Microbiol. 2021;61(3):270–278.
  • Bharathiraja B, Selvakumari IAE, Iyyappan J, et al. Itaconic acid: an effective sorbent for removal of pollutants from dye industry effluents. Curr Opin Environ Sci Health. 2019;12:6–17.
  • Varjani S, Rakholiya P, Ng HY, et al. Microbial degradation of dyes: an overview. Bioresour Technol. 2020;314:123728.
  • Varjani S, Rakholiya P, Shindhal T, et al. Trends in dye industry effluent treatment and recovery of value added products. Journal of Water Process Engineering. 2021b;39:101734.
  • Chen C-Y, Kuo E-W, Nagarajan D, et al. Semi-batch cultivation of Chlorella sorokiniana AK-1 with dual carriers for the effective treatment of full strength piggery wastewater treatment. Bioresour Technol. 2021;326:124773.
  • Seth K, Kumar A, Rastogi RP, et al. Bioprospecting of fucoxanthin from diatoms—Challenges and perspectives. Algal Res. 2021;60:102475.
  • Vinayak V, Khan MJ, Jha AN. Photosystem I P700 chlorophyll a apoprotein A1 as PCR marker to identify diatoms and their associated lineage. J Eukaryotic Microbiol. 2021a;e12866.  https://doi.org/10.1111/jeu.12866.
  • Ahirwar A, Meignen G, Khan M, et al. Nanotechnological approaches to disrupt the rigid cell walled microalgae grown in wastewater for value-added biocompounds: commercial applications, challenges, and breakthrough. Biomass Convers Biorefin. 2021a. 10.1007/s13399-021-01965-1
  • Arif M, Bai Y, Usman M, et al. Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: role of lipidomics. Bioresour Technol. 2020;298:122299.
  • Bach LT, Riebesell U, Sett S, et al. An approach for particle sinking velocity measurements in the 3–400 μm size range and considerations on the effect of temperature on sinking rates. Mar Biol. 2012;159(8):1853–1864.
  • Soleimani M, Rutten L, Maddala SP, et al. Modifying the thickness, pore size, and composition of diatom frustule in Pinnularia sp. with Al 3+ ions. Sci Rep. 2020;10(1):1–12.
  • Vinayak V, Manoylov KM, Gateau H, et al. Diatom milking: a review and new approaches. Mar Drugs. 2015;13(5):2629–2665.
  • Rogato A, De Tommasi E. Physical, chemical, and genetic techniques for diatom frustule modification: applications in nanotechnology. Appl Sci. 2020;10(23):8738.
  • Zeb S, Ali N, Ali Z, et al. Silica-based nanomaterials as designer adsorbents to mitigate emerging organic contaminants from water matrices. Journal of Water Process Engineering. 2020;38:101675.
  • Kiran MT, Bhaskar MV, Tiwari A. Phycoremediation of eutrophic lakes using diatom algae. In: Lake sciences and climate change. IntechOpen, UK, 2016. p. 103–115.
  • Jayaswal K, Sahu V, Gurjar B. Water pollution, human health and remediation. In: Water Remediation. Springer, Singapore; 2018. p. 11–27.
  • Rashid H, Manzoor MM, Mukhtar S. Urbanization and its effects on water resources: an exploratory analysis. Asian J Water Environ Pollut. 2018;15(1):67–74
  • Tramontano C, Chianese G, Terracciano M, et al. Nanostructured biosilica of diatoms: from water world to biomedical applications. Appl Sci. 2020;10(19):6811.
  • Li K, Liu Q, Fang F, et al. Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresour Technol. 2019;291:121934.
  • Olteanu M, Baraitaru A, Panait A-M, et al. Advanced SiO 2 composite materials for heavy metal removal from wastewater. Water Air Soil Pollut. 2019;230(8):1–10.
  • Sriram G, Bhat Mp, Kigga M, et al. Amine activated diatom xerogel hybrid material for efficient removal of hazardous dye. Mater Chem Phys. 2019;235:121738.
  • Janani R, Baskar G, Sivakumar K, et al. Advancements in heavy metals removal from effluents employing nano-adsorbents: way towards cleaner production. Environ Res. 2021;203:111815.
  • Gupta V, Tyagi I, Sadegh H, et al. Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Techno Soc. 2015;34(3):195–214.
  • Teerawattanasuk C, Voottipruex P, Horpibulsuk S. Improved heavy metal immobilization of compacted clay by cement treatment. Heliyon. 2021;7(4):e06917.
  • Anjum A. Adsorption technology for removal of toxic pollutants. In: Sustainable heavy metal remediation. Springer, Cham; 2017. p. 25–80.
  • Hoffmann F, Cornelius M, Morell J, et al. Silica‐based mesoporous organic–inorganic hybrid materials. Angew Chem. 2006;45(20):3216–3251.
  • Vinu A, Hossain KZ, Ariga K. Recent advances in functionalization of mesoporous silica. J Nanosci Nanotechnol. 2005;5(3):347–371.
  • De Stefano L, De Stefano M, De Tommasi E, et al. A natural source of porous biosilica for nanotech applications: the diatoms microalgae. Phys Status Solidi C. 2011;8(6):1820–1825.
  • Terracciano M, De Stefano L, Rea I. Diatoms green nanotechnology for biosilica-based drug delivery systems. Pharmaceutics. 2018;10(4):242.
  • Sbihi K, Cherifi O, Bertrand M, et al. Biosorption of metals (Cd, Cu and Zn) by the freshwater diatom Planothidium lanceolatum: a laboratory study. Diatom Res. 2014;29(1):55–63
  • Ma J, Zhou B, Duan D, et al. Salinity-dependent nanostructures and composition of cell surface and its relation to Cd toxicity in an estuarine diatom. Chemosphere. 2019;215:807–814.
  • Falasco E, Bona F, Ginepro M, et al. Morphological abnormalities of diatom silica walls in relation to heavy metal contamination and artificial growth conditions. Water Sa. 2009b;35(5):5.
  • Pandey LK, Kumar D, Yadav A, et al. Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecol Indic. 2014;36:272–279.
  • Olguín EJ. Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnol Adv. 2012;30(5):1031–1046.
  • Rout PR, Shahid MK, Dash RR, et al. Nutrient removal from domestic wastewater: a comprehensive review on conventional and advanced technologies. J Environ Manage. 2021;296:113246.
  • Feng S, Ngo HH, Guo W, et al. Roles and applications of enzymes for resistant pollutants removal in wastewater treatment. Bioresour Technol. 2021;335:125278.
  • Khan MJ, Singh R, Shewani K, et al. Exopolysaccharides directed embellishment of diatoms triggered on plastics and other marine litter. Sci Rep. 2020;10(1):1–11.
  • Saravanan A, Kumar PS, Varjani S, et al. A review on algal-bacterial symbiotic system for effective treatment of wastewater. Chemosphere. 2021;271:129540.
  • Khan MJ, Singh N, Mishra S, et al. Impact of light on Microalgal photosynthetic microbial fuel cells and removal of pollutants by nanoadsorbent biopolymers: updates, challenges and innovations. Chemosphere. 2022;132589, https://doi.org/10.1016/j.chemosphere.2021.132589.
  • Launay H, Huang W, Maberly SC, et al. Regulation of carbon metabolism by environmental conditions: a perspective from diatoms and other chromalveolates. Front Plant Sci. 2020;11:1033.
  • Falasco E, Bona F, Badino G, et al. Diatom teratological forms and environmental alterations: a review. Hydrobiologia. 2009a;623(1):1–35.
  • Schiffman E, Ohrbach R, Truelove E, et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the International RDC/TMD consortium network and orofacial pain special interest group. J Oral Facial Pain Headache. 2014;28(1):6.
  • Montagnes DJ, Franklin M. Effect of temperature on diatom volume, growth rate, and carbon and nitrogen content: reconsidering some paradigms. Limnol Oceanography. 2001;46(8):2008–2018.
  • Pandey LK, Bergey EA. Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted water bodies as a biomonitoring tool. SciTotal Environ. 2016;550:372–381.
  • Gautam S, Pandey LK, Vinayak V, et al. Morphological and physiological alterations in the diatom Gomphonema pseudoaugur due to heavy metal stress. Ecol Indic. 2017;72:67–76.
  • Morin S, Coste M 2006. Metal-induced shifts in the morphology of diatoms from the Riou mort and Riou viou streams (South West France). 91–106.
  • Rimet F, Ector L, Dohet A, et al. Impacts of fluoranthene on diatom assemblages and frustule morphology in indoor microcosms. Vie et Milieu. 2004;54:145–156.
  • Morin S, Coste M, Hamilton PB. SCANNING ELECTRON MICROSCOPY OBSERVATIONS OF DEFORMITIES IN SMALL PENNATE DIATOMS EXPOSED TO HIGH CADMIUM CONCENTRATIONS(1). J Phycol. 2008;44(6):1512–1518.
  • Debenest T, Coste M, Delmas F, et al. Les frustules déformés de diatomées benthiques et les pesticides: le cas des pollutions agricoles dans les coteaux de Gascogne (Sud-Ouest de la France). Diatomania. 2006;10:62–65.
  • Woodard K, Neustupa J. Morphometric asymmetry of frustule outlines in the pennate diatom luticola poulickovae (Bacillariophyceae). Symmetry. 2016;8(12):150.
  • Cattaneo A, Couillard Y, Wunsam S, et al. Diatom taxonomic and morphological changes as indicators of metal pollution and recovery in Lac Dufault (Québec, Canada). J Paleolimnol. 2004;32(2):163–175
  • Olenici A, Blanco S, Borrego-Ramos M, et al. Exploring the effects of acid mine drainage on diatom teratology using geometric morphometry. Ecotoxicology. 2017;26(8):1018–1030.
  • Szabó K, Kiss KT, Taba G, et al. Epiphytic diatoms of the Tisza River, kisköre reservoir and some oxbows of the Tisza River after the cyanide and heavy metal pollution in 2000. Acta Bot Croat. 2005;64(1):1–46.
  • Sienkiewicz E, Gąsiorowski M. The evolution of a mining lake-From acidity to natural neutralization. SciTotal Environ. 2016;557-558:343–354.
  • Renzi M, Roselli L, Giovani A, et al. Early warning tools for ecotoxicity assessment based on Phaeodactylum tricornutum. Ecotoxicology. 2014;23(6):1055–1072.
  • Vinayak V, Gordon R, Gautam S, et al. Discovery of a diatom that oozes oil. Adv Sci Lett. 2014;20(7):1256–1267.
  • Khan MJ, Singh R, Joshi KB, et al. TiO 2 doped polydimethylsiloxane (PDMS) and Luffa cylindrica based photocatalytic nanosponge to absorb and desorb oil in diatom solar panels. RSC Adv. 2019;9(39):22410–22416.
  • Cantonati M, Angeli N, Virtanen L, et al. Achnanthidium minutissimum (Bacillariophyta) valve deformities as indicators of metal enrichment in diverse widely-distributed freshwater habitats. SciTotal Environ. 2014;475:201–215.
  • Pandey LK, Han T, Gaur J. Response of a phytoplanktonic assemblage to copper and zinc enrichment in microcosm. Ecotoxicology. 2015;24(3):573–582.
  • Antoni JS, Daglio Y, Areco MM, et al. Zinc-induced stress on cells of Halamphora luciae (Bacillariophyceae). Eur J Phycol. 2021;56(1):37–50.
  • Pham T-L. Effect of silver nanoparticles on tropical freshwater and marine microalgae. J Chem. 2019;2019:1-7.
  • Park J, Lee H, Depuydt S, et al. Assessment of five live-cell characteristics in periphytic diatoms as a measure of copper stress. J Hazard Mater. 2020;400:123113.
  • Falasco E, Ector L, Wetzel CE, et al. Looking back, looking forward: a review of the new literature on diatom teratological forms (2010–2020). Hydrobiologia. 2021;848:1–79.
  • Vinayak V, Gordon R, Joshi K, et al. 2018. Diafuel. Trademark application no 3778882; Trade Marks Journal No: 1846(Class 4.).
  • Vinayak V, Joshi KB, Gordon R, et al. Nanoengineering of diatom surfaces for emerging applications. In: Diatom Nanotechnology, RSC, United Kingdom. 2017. p. 55–78.
  • Khan MJ, Bawra N, Verma A, et al. Cultivation of diatom Pinnularia saprophila for lipid production: a comparison of methods for harvesting the lipid from the cells. Bioresour Technol. 2021a;319:124129.
  • Pandey LK. In situ assessment of metal toxicity in riverine periphytic algae as a tool for biomonitoring of fluvial ecosystems. Environ Technol Innovation. 2020;18:100675.
  • Pandey LK, Bergey EA. Metal toxicity and recovery response of riverine periphytic algae. SciTotal Environ. 2018;642:1020–1031.
  • Mu W, Jia K, Liu Y, et al. Response of the freshwater diatom Halamphora veneta (Kützing) Levkov to copper and mercury and its potential for bioassessment of heavy metal toxicity in aquatic habitats. Environ Sci Pollut Res. 2017;24(34):26375–26386.
  • Mu W, Chen Y, Liu Y, et al. Toxicological effects of cadmium and lead on two freshwater diatoms. Environ Toxicol Pharmacol. 2018;59:152–162.
  • Licursi M, Gómez N. Short-term toxicity of hexavalent-chromium to epipsammic diatoms of a microtidal estuary (Río de la Plata): responses from the individual cell to the community structure. Aquatic Toxicol. 2013;134-135:82–91.
  • Lee J, Choi J, Park JH, et al. Cytoprotective silica coating of individual mammalian cells through bioinspired silicification. Angew Chem. 2014;53(31):8056–8059.
  • Yang SH, Lee KB, Kong B, et al. Biomimetic encapsulation of individual cells with silica. Angew Chem. 2009;48(48):9160–9163.
  • Kumar V, Kashyap M, Gautam S, et al. Fast Fourier infrared spectroscopy to characterize the biochemical composition in diatoms. J Biosci. 2018;43(4):717–729.
  • Yang SH, Ko EH, Jung YH, et al. Bioinspired functionalization of silica‐encapsulated yeast cells. Angew Chem. 2011;123(27):6239–6242.
  • Lee H, Hong D, Cho H, et al. Turning diamagnetic microbes into multinary micro-magnets: magnetophoresis and spatio-temporal manipulation of individual living cells. Sci Rep. 2016;6(1):1–10.
  • Lei Q, Guo J, Kong F, et al. Bioinspired Cell Silicification: from Extracellular to Intracellular. J Am Chem Soc. 2021;143(17):6305–6322.
  • Kong X, Chong X, Squire K, et al. Microfluidic diatomite analytical devices for illicit drug sensing with ppb-Level sensitivity. Sens Actuators B Chem. 2018;259:587–595.
  • Gupta S, Kashyap M, Kumar V, et al. Peptide mediated facile fabrication of silver nanoparticles over living diatom surface and its application. J Mol Liq. 2018;249:600–608.
  • Leonardo S, Prieto-Simón B, Campàs M. Past, present and future of diatoms in biosensing. Trends Analyt Chem. 2016;79:276–285.
  • Zhen L, Ford N, Gale DK, et al. Photoluminescence detection of 2, 4, 6-trinitrotoluene (TNT) binding on diatom frustule biosilica functionalized with an anti-TNT monoclonal antibody fragment. Biosens Bioelectron. 2016;79:742–748.
  • Lu M, Li L, Shen S, et al. Highly efficient removal of Pb 2+ by a sandwich structure of metal–organic framework/GO composite with enhanced stability. New J Chem. 2019;43(2):1032–1037.
  • Fu W, Wichuk K, Brynjólfsson S. Developing diatoms for value-added products: challenges and opportunities. N Biotechnol. 2015b;32(6):547–551.
  • Corcoll N, Bonet B, Morin S, et al. The effect of metals on photosynthesis processes and diatom metrics of biofilm from a metal-contaminated river: a translocation experiment. Ecol Indic. 2012;18:620–631.
  • Bao S, Li K, Ning P, et al. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: behaviours and mechanisms. Appl Surf Sci. 2017;393:457–466.
  • Repo E, Warchoł JK, Bhatnagar A, et al. Heavy metals adsorption by novel EDTA-modified chitosan–silica hybrid materials. J Colloid Interface Sci. 2011;358(1):261–267.
  • Uthappa U, Sriram G, Arvind O, et al. Engineering MIL-100 (Fe) on 3D porous natural diatoms as a versatile high performing platform for controlled isoniazid drug release, Fenton’s catalysis for malachite green dye degradation and environmental adsorbents for Pb2+ removal and dyes. Appl Surf Sci. 2020;528:146974.
  • Baeyens W, Gao Y, Davison W, et al. In situ measurements of micronutrient dynamics in open seawater show that complex dissociation rates may limit diatom growth. Sci Rep. 2018;8(1):1–11.
  • Fu L, Hamzeh M, Dodard S, et al. Effects of TiO2 nanoparticles on ROS production and growth inhibition using freshwater green algae pre-exposed to UV irradiation. Environ Toxicol Pharmacol. 2015a;39(3):1074–1080.
  • Loix C, Huybrechts M, Vangronsveld J, et al. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci. 2017;8:1867.
  • Hernández-Ávila J, Salinas-Rodríguez E, Cerecedo-Sáenz E, et al. Diatoms and their capability for heavy metal removal by cationic exchange. Metals. 2017;7(5):169.
  • Jadoon S, Malik A. DNA damage by heavy metals in animals and human beings: an overview. Biochem Pharmacol. 2017;6(3):1–8.
  • Łukowski A, Dec D. Influence of Zn, Cd, and Cu fractions on enzymatic activity of arable soils. Environ Monit Assess. 2018;190(5):1–12.
  • Santos J, Almeida SF, Figueira E. Cadmium chelation by frustulins: a novel metal tolerance mechanism in Nitzschia palea (Kützing) W. Smith. Ecotoxicology. 2013;22(1):166–173.
  • Lane ES, Jang K, Cullen JT, et al. The interaction between inorganic iron and cadmium uptake in the marine diatom Thalassiosira oceanica. Limnol Oceanography. 2008;53(5):1784–1789.
  • Volland S, Bayer E, Baumgartner V, et al. Rescue of heavy metal effects on cell physiology of the algal model system Micrasterias by divalent ions. J Plant Physiol. 2014;171(2):154–163.
  • Guo Y, Wang X, Hu P, et al. ZIF-8 coated polyvinylidene fluoride (PVDF) hollow fiber for highly efficient separation of small dye molecules. Appl Mater Today. 2016;5:103–110.
  • Shah AV, Varjani S, Srivastava VK, et al. Zero liquid discharge as a sustainable technology - A review on assessment of technology, challenges and perspectives. Indian J Exp Biol. 2020;58(8):508–514.
  • Shindhal T, Rakholiya P, Varjani S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 2021;12(1):70–87.
  • Uthappa U, Kigga M, Sriram G, et al. Facile green synthetic approach of bio inspired polydopamine coated diatoms as a drug vehicle for controlled drug release and active catalyst for dye degradation. Microporous Mesoporous Mater. 2019;288:109572.
  • Sriram G, Kigga M, Uthappa U, et al. Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: a review. Adv Colloid Interface Sci. 2020;282:102198.
  • Varjani SJ. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. 2017;223:277–286.
  • Varjani SJ, Gnansounou E, Pandey A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere. 2017;188:280–291.
  • Varjani SJ, Rana DP, Jain AK, et al. Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad. 2015;103:116–124.
  • Behera BK, Das A, Sarkar DJ, et al. Polycyclic Aromatic Hydrocarbons (PAHs) in inland aquatic ecosystems: perils and remedies through biosensors and bioremediation. Environ Pollut. 2018;241:212–233.
  • Varjani S, Joshi R, Srivastava VK, et al. Treatment of wastewater from petroleum industry: current practices and perspectives. Environ Sci Pollut Res. 2019;1-9. 10.1007/s11356-019-04725-x.
  • Varjani SJ, Upasani VN. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad. 2017;120:71–83.
  • Lynn SG, Price DJ, Birge WJ, et al. Effect of nutrient availability on the uptake of PCB congener 2, 2′, 6, 6′-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton (Daphnia pulicaria). Aquatic Toxicol. 2007;83(1):24–32.
  • Hong Y-W, Yuan D-X, Lin Q-M, et al. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull. 2008;56(8):1400–1405.
  • Bopp SK, Lettieri T. Gene regulation in the marine diatom Thalassiosira pseudonana upon exposure to polycyclic aromatic hydrocarbons (PAHs). Gene. 2007;396(2):293–302.
  • Li Y, Zhang C, Hu Z. Selective removal of pharmaceuticals and personal care products from water by titanium incorporated hierarchical diatoms in the presence of natural organic matter. Water Res. 2021;189:116628.
  • Vinayak V, Kumar V, Kashyap M, et al. 2016. Fabrication of resonating microfluidic chamber for biofuel production in diatoms (Resonating device for biofuel production). 2016 3rd International Conference on Emerging Electronics (ICEE); IEEE, Mumbai, India. pp. 1–6.
  • Nie Z, Nijhuis CA, Gong J, et al. Electrochemical sensing in paper-based microfluidic devices. Lab Chip. 2010;10(4):477–483.
  • Al-jabri H, Das P, Khan S, et al. Treatment of wastewaters by microalgae and the potential applications of the produced biomass—A review. Water. 2021;13(1):27.
  • Mishra B, Varjani S, Iragavarapu GP, et al. Microbial fingerprinting of potential biodegrading organisms. Curr Pollut Rep. 2019;5(4):181–197.
  • Do MH, Ngo HH, Guo W, et al. Microbial fuel cell-based biosensor for online monitoring wastewater quality: a critical review. SciTotal Environ. 2020;712:135612.
  • Vinayak V, Khan MJ, Varjani S, et al. Microbial fuel cells for remediation of environmental pollutants and value addition: special focus on coupling diatom microbial fuel cells with photocatalytic and photoelectric fuel cells. J Biotechnol. 2021b;338:5–19.
  • Khan MJ, Mangesh H, Ahirwar A, et al. Insights into diatom microalgal farming for treatment of wastewater and pretreatment of algal cells by ultrasonication for value creation. Environ Res. 2021b;201:111550.
  • Koyande AK, Chew KW, Manickam S, et al. Emerging algal nanotechnology for high-value compounds: a direction to future food production. Trends Food SciTechnol. 2021;116:290–302.
  • Ahirwar A, Gupta S, Kashyap M, et al. Differential cell viability in Nitzschia palea on exposure to different organic and inorganic environmental effluents. Int J Environ Sci Technol. 2020;17(1):493–504.
  • Gautam S, Kashyap M, Gupta S, et al. Metabolic engineering of tio 2 nanoparticles in nitzschia palea to form diatom nanotubes: an ingredient for solar cells to produce electricity and biofuel. RSC Adv. 2016;6(99):97276–97284.