2,161
Views
3
CrossRef citations to date
0
Altmetric
Research paper

Fully human recombinant antibodies against EphA2 from a multi-tumor patient immune library suitable for tumor-targeted therapy

, , , , , , , & ORCID Icon show all
Pages 10379-10400 | Received 11 Aug 2021, Accepted 05 Oct 2021, Published online: 19 Dec 2021

References

  • Xiao T, Xiao Y, Wang W, et al. Targeting EphA2 in cancer. J Hematol Oncol. 2020;13(1):114.
  • Anderton M, van der Meulen E, Blumenthal MJ, et al. The Role of the Eph receptor family in tumorigenesis. Cancers (Basel). 2021;13(2).
  • Tandon M, Vemula SV, Mittal SK. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin Ther Targets. 2011;15(1):31–51.
  • Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol. 2013;5(9).
  • Park JE, Son AI, Zhou R. Roles of EphA2 in development and disease. Genes (Basel). 2013;4(3):334–357.
  • Sulman EP, Tang XX, Allen C, et al. ECK, a human EPH-related gene, maps to 1p36.1, a common region of alteration in human cancers. Genomics. 1997;40(2):371–374.
  • Cui XD, Lee MJ, Yu GR, et al. EFNA1 ligand and its receptor EphA2: potential biomarkers for hepatocellular carcinoma. Int J Cancer. 2010;126:940–949.
  • Wang H, Hou W, Perera A, et al. Targeting EphA2 suppresses hepatocellular carcinoma initiation and progression by dual inhibition of JAK1/STAT3 and AKT signaling. Cell Rep. 2021;34(8):108765.
  • Brannan JM, Dong W, Prudkin L, et al. Expression of the receptor tyrosine kinase EphA2 is increased in smokers and predicts poor survival in non-small cell lung cancer. Clin Cancer Res. 2009;15(13):4423–4430.
  • Walker-Daniels J, Coffman K, Azimi M, et al. Overexpression of the EphA2 tyrosine kinase in prostate cancer. Prostate. 1999;41(4):275–280.
  • Song W, Hwang Y, Youngblood VM, et al. Targeting EphA2 impairs cell cycle progression and growth of basal-like/triple-negative breast cancers. Oncogene. 2017;36(40):5620–5630.
  • Dunne PD, Dasgupta S, Blayney JK, et al. EphA2 Expression Is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer. Clin Cancer Res. 2016;22(1):230–242.
  • Kikuchi S, Kaibe N, Morimoto K, et al. Overexpression of Ephrin A2 receptors in cancer stromal cells is a prognostic factor for the relapse of gastric cancer. Gastric Cancer. 2015;18(3):485–494.
  • Huang C, Chen Z, He Y, et al. EphA2 promotes tumorigenicity of cervical cancer by up‐regulating CDK6. J Cell Mol Med. 2021;25(6):2967–2975.
  • Miao B, Ji Z, Tan L, et al. EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma. Cancer Discov. 2015;5(3):274–287.
  • Biao-xue R, Xi-guang C, Shuan-ying Y, et al. EphA2-dependent molecular targeting therapy for malignant tumors. Curr Cancer Drug Targets. 2011;11(9):1082–1097.
  • Jackson D, Gooya J, Mao S, et al. A Human Antibody–Drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res. 2008;68(22):9367–9374.
  • Jacobson O, Li Q, Chen H, et al. PET-Guided Evaluation and optimization of internalized antibody-drug conjugates targeting erythropoietin-producing hepatoma A2 receptor. J Nucl Med. 2017;58(11):1838–1844.
  • Sydow JF, Lipsmeier F, Larraillet V, et al. Structure-based prediction of asparagine and aspartate degradation sites in antibody variable regions. PLoS One. 2014;9(6):e100736.
  • Reichert JM, Rosensweig CJ, Faden LB, et al. Monoclonal antibody successes in the clinic. Nat Biotechnol. 2005;23(9):1073–1078.
  • Arlotta KJ, Owen SC. Antibody and antibody derivatives as cancer therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(5):e1556.
  • Ayyar BV, Arora S, O’Kennedy R. Coming-of-age of antibodies in cancer therapeutics. Trends Pharmacol Sci. 2016;37(12):1009–1028.
  • Thurber GM, Schmidt MM, Wittrup KD. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv Drug Deliv Rev. 2008;60(12):1421–1434.
  • Diebolder P, Mpoy C, Scott J, et al. Preclinical evaluation of an engineered single-chain fragment variable-fragment crystallizable targeting human CD44. J Nucl Med. 2021;62(1):137–143.
  • Olafsen T, Wu AM. Antibody vectors for imaging. Semin Nucl Med. 2010;40(3):167–181.
  • Yokota T, Milenic DE, Whitlow M, et al. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 1992;52:3402–3408.
  • Yasunaga M. Antibody therapeutics and immunoregulation in cancer and autoimmune disease. Semin Cancer Biol. 2020;64:1–12.
  • Sen T, Rodriguez BL, Chen L, et al. Targeting DNA damage response promotes antitumor immunity through STING-Mediated T-cell activation in small cell lung cancer. Cancer Discov. 2019;9(5):646–661.
  • Au KM, Park SI, Wang AZ. Trispecific natural killer cell nanoengagers for targeted chemoimmunotherapy. Sci Adv. 2020;6(27):eaba8564.
  • Ichiki Y, Shigematsu Y, Baba T, et al. Development of adoptive immunotherapy with KK-LC-1-specific TCR-transduced gammadeltaT cells against lung cancer cells. Cancer Sci. 2020;111(11):4021–4030.
  • Dougan SK, Dougan M, Kim J, et al. Transnuclear TRP1-specific CD8 T cells with high or low affinity TCRs show equivalent antitumor activity. Cancer Immunol Res. 2013;1(2):99–111.
  • Thul PJ, Åkesson L, Wiking M, et al. A subcellular map of the human proteome. Science. 2017;356(6340).
  • Tang Z, Kang B, Li C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 2019;47:W556–W560.
  • Stojkovic L, Jovanovic I, Zivkovic M, et al. The effects of aronia melanocarpa juice consumption on the mRNA expression profile in peripheral blood mononuclear cells in subjects at cardiovascular risk. Nutrients. 2020;12(5).
  • Babcook JS, Leslie KB, Olsen OA, et al. A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. Proc Natl Acad Sci U S A 1996; 93(15): 7843–7848.
  • Han Q, Jones JA, Nicely NI, et al. Difficult-to-neutralize global HIV-1 isolates are neutralized by antibodies targeting open envelope conformations. Nat Commun. 2019;10(1):2898.
  • Smith K, Garman L, Wrammert J, et al. Rapid generation of fully human monoclonal antibodies specific to a vaccinating antigen. Nat Protoc. 2009;4(3):372–384.
  • Yuan Q, Huang L, Wang X, et al. Construction of human nonimmune library and selection of scFvs against IL-33. Appl Biochem Biotechnol. 2012;167(3):498–509.
  • Ueda T, Kumagai A, Iriguchi S, et al. Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer Sci. 2020;111(5):1478–1490.
  • Vitale F, Giliberto L, Ruiz S, et al. Anti-tau conformational scFv MC1 antibody efficiently reduces pathological tau species in adult JNPL3 mice. Acta Neuropathol Commun. 2018;6(1):82.
  • Mechaly A, Zahavy E, Fisher M. Development and implementation of a single-chain fv antibody for specific detection of bacillus anthracis spores. Appl Environ Microbiol. 2008;74(3):818–822.
  • Huie MA, Cheung MC, Muench MO, et al. Antibodies to human fetal erythroid cells from a nonimmune phage antibody library. Proc Natl Acad Sci U S A 2001; 98(5): 2682–2687.
  • Diebolder P, Keller A, Haase S, et al. Generation of “LYmph Node Derived Antibody Libraries” (LYNDAL) for selecting fully human antibody fragments with therapeutic potential. MAbs. 2014;6(1):130–142.
  • Zhang R, Prabakaran P, Yu X, et al. A platform-agnostic, function first-based antibody discovery strategy using plasmid-free mammalian expression of antibodies. MAbs. 2021;13(1):1904546.
  • Esparza TJ, Martin NP, Anderson GP, et al. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci Rep. 2020;10(1):22370.
  • Persson N, Jansson B, Stuhr-Hansen N, et al. A combinatory antibody-antigen microarray assay for high-content screening of single-chain fragment variable clones from recombinant libraries. PLoS One. 2016;11(12):e0168761.
  • Luz D, Chen G, Maranhao AQ, et al. Development and characterization of recombinant antibody fragments that recognize and neutralize in vitro Stx2 toxin from shiga toxin-producing escherichia coli. PLoS One. 2015;10(3):e0120481.
  • Nixon AE, Chen J, Sexton DJ, et al. Fully human monoclonal antibody inhibitors of the neonatal fc receptor reduce circulating IgG in non-human primates. Front Immunol. 2015;6:176.
  • Khan L, Kumar R, Thiruvengadam R, et al. Cross-neutralizing anti-HIV-1 human single chain variable fragments(scFvs) against CD4 binding site and N332 glycan identified from a recombinant phage library. Sci Rep. 2017;7(1):45163.
  • Xing L, Xu Y, Sun K, et al. Identification of a peptide for folate receptor alpha by phage display and its tumor targeting activity in ovary cancer xenograft. Sci Rep. 2018;8(1):8426.
  • Delage JA, Faivre-Chauvet A, Fierle JK, et al. (177)Lu radiolabeling and preclinical theranostic study of 1C1m-Fc: an anti-TEM-1 scFv-Fc fusion protein in soft tissue sarcoma. EJNMMI Res. 2020;10(1):98.
  • Shu M, Yan H, Xu C, et al. A novel anti-HER2 antibody GB235 reverses Trastuzumab resistance in HER2-expressing tumor cells in vitro and in vivo. Sci Rep. 2020;10(1):2986.
  • Ahn HM, Ryu J, Song JM, et al. Anti-cancer activity of novel TM4SF5-Targeting Antibodies through TM4SF5 neutralization and immune cell-mediated cytotoxicity. Theranostics. 2017;7(3):594–613.
  • Gu X, Vedvyas Y, Chen X, et al. Novel strategy for selection of monoclonal antibodies against highly conserved antigens: phage library panning against ephrin-B2 displayed on yeast. PLoS One. 2012;7(1):e30680.
  • Okbazghi SZ, More AS, White DR, et al. Production, characterization, and biological evaluation of well-defined IgG1 Fc glycoforms as a model system for biosimilarity analysis. J Pharm Sci. 2016;105(2):559–574.
  • Dong J, Huang B, Wang B, et al. Development of humanized tri-specific nanobodies with potent neutralization for SARS-CoV-2. Sci Rep. 2020;10(1):17806.
  • Malik-Chaudhry HK, Prabhakar K, Ugamraj HS, et al. TNB-486 induces potent tumor cell cytotoxicity coupled with low cytokine release in preclinical models of B-NHL. MAbs. 2021;13(1):1890411.
  • Huang Y, Mao Q, He J, et al. Fusions of tumor-derived endothelial cells with dendritic cells induces antitumor immunity. Sci Rep. 2017;7:46544.
  • Wang N, Wu D, Long Q, et al. Dysregulated YY1/PRMT5 axis promotes the progression and metastasis of laryngeal cancer by targeting Hippo pathway. J Cell Mol Med. 2020;25(2):946–959.
  • Kumar R, Parray HA, Shrivastava T, et al. Phage display antibody libraries: a robust approach for generation of recombinant human monoclonal antibodies. Int J Biol Macromol. 2019;135:907–918.
  • Ponsel D, Neugebauer J, Ladetzki-Baehs K, et al. High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules. 2011;16(5):3675–3700.
  • Frenzel A, Kugler J, Helmsing S, et al. Designing human antibodies by phage display. Transfus Med Hemother. 2017;44(5):312–318.
  • Paduch M, Koide A, Uysal S, et al. Generating conformation-specific synthetic antibodies to trap proteins in selected functional states. Methods. 2013;60(1):3–14.
  • Hoogenboom HR. Selecting and screening recombinant antibody libraries. Nat Biotechnol. 2005;23(9):1105–1116.
  • Fu M, He Q, Guo Z, et al. Therapeutic bispecific T-Cell engager antibody targeting the transferrin receptor. Front Immunol. 2019;10:1396.
  • Ferl GZ, Kenanova V, Wu AM, et al. A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments. Mol Cancer Ther. 2006;5(6):1550–1558.
  • Xu W, Zhang L, Zhang Y, et al. Construction and expression of a human/mouse chimeric CD19 monoclonal antibody: successful modification of a murine IgM to a chimeric IgG. Exp Ther Med. 2014;7(4):849–854.
  • Lu X, Machiesky LA, De Mel N, et al. Characterization of IgG1 Fc Deamidation at Asparagine 325 and Its Impact on Antibody-dependent Cell-mediated Cytotoxicity and FcgammaRIIIa Binding. Sci Rep. 2020;10(1):383.
  • Maia J, Otake AH, Pocas J, et al. Transcriptome Reprogramming of CD11b(+) bone marrow cells by pancreatic cancer extracellular vesicles. Front Cell Dev Biol. 2020;8:592518.
  • Zeng X, Li S, Tang S, et al. Changes of serum IgG glycosylation patterns in primary biliary cholangitis patients. Front Immunol. 2021;12:669137.
  • Jones JD. Leishmania tarentolae: an alternative approach to the production of monoclonal antibodies to treat emerging viral infections. Infect Dis Poverty. 2015;4(1):8.
  • Mullard A. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov. 2021;20(7):491–495.
  • Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer. 2010;10(3):165–180.
  • Wykosky J, Debinski W. The EphA2 receptor and ephrinA1 ligand in solid tumors: function and therapeutic targeting. Mol Cancer Res. 2008;6(12):1795–1806.
  • Annunziata CM, Kohn EC, LoRusso P, et al. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest New Drugs. 2013;31(1):77–84.
  • Shitara K, Satoh T, Iwasa S, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the afucosylated, humanized anti-EPHA2 antibody DS-8895a: a first-in-human phase I dose escalation and dose expansion study in patients with advanced solid tumors. J Immunother Cancer. 2019;7(1):219.
  • Rossmeisl JH, Herpai D, Quigley M, et al. Phase I trial of convection-enhanced delivery of IL13RA2 and EPHA2 receptor targeted cytotoxins in dogs with spontaneous intracranial gliomas. Neuro Oncol. 2021;23(3):422–434.
  • Janes PW, Vail ME, Gan HK, et al. Antibody Targeting of Eph receptors in cancer. Pharmaceuticals (Basel). 2020;13(5).
  • Carles-Kinch K, Kilpatrick KE, Stewart JC, et al. Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Res. 2002;62:2840–2847.
  • Sakamoto A, Kato K, Hasegawa T, et al. an agonistic antibody to EPHA2 exhibits antitumor effects on human melanoma cells. Anticancer Res. 2018;38(6):3273–3282.