3,634
Views
3
CrossRef citations to date
0
Altmetric
Review

MicroRNA-mediated bioengineering for climate-resilience in crops

, , , , , ORCID Icon & ORCID Icon show all
Pages 10430-10456 | Received 11 Sep 2021, Accepted 21 Oct 2021, Published online: 09 Dec 2021

References

  • Cubasch U, Wuebbles D, Chen D, et al. AR5 climate change 2013: the physical science basis — IPCC. United Kingdom and New York: Cambridge University Press, Cambridge; 2021. p. 1585.
  • Shukla PR, Skea J, Buendia EC, et al. IPCC, 2019: climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, [2019, accessed 2021 Aug 26]. https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf
  • Daryanto S, Wang L, Jacinthe P-A. Global synthesis of drought effects on maize and wheat production. PLoS One. 2016;11:e0156362.
  • Asseng S, Ewert F, Martre P, et al. Rising temperatures reduce global wheat production. Nat Clim Chang. 2015;5:143–147.
  • Kim W, Iizumi T, Nishimori M. Global patterns of crop production losses associated with droughts from 1983 to 2009. J Appl Meteorol Climatol. 2019;58:1233–1244.
  • Zhao C, Liu B, Piao S, et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci. 2017;114:9326–9331.
  • Tito R, Vasconcelos HL, Feeley KJ. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Glob Chang Biol. 2018;24:e592–e602. Epub ahead of print 15 February 2018.
  • Raza A, Razzaq A, Mehmood S, et al. Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants. 2019;8:34.
  • Lobell DB. Climate change adaptation in crop production: beware of illusions. Glob Food Sec. 2014;3:72–76.
  • Chaudhary S, Grover A, Sharma PC. MicroRNAs: potential targets for developing stress-tolerant crops. Life. 2021;11:289.
  • Zhang B, Wang Q. MicroRNA, a new target for engineering new crop cultivars. Bioengineered. 2016;7:7–10.
  • Wani SH, Kumar V, Khare T, et al. miRNA applications for engineering abiotic stress tolerance in plants. Biologia. 2020;75:1063–1081.
  • Xu J, Hou QM, Khare T, et al. Exploring miRNAs for developing climate-resilient crops: a perspective review. Sci Total Environ. 2019;653:91–104.
  • Chen X. Small RNAs and their roles in plant development. Epub ahead of print 2009. DOI: 10.1146/annurev.cellbio.042308.113417.
  • Sunkar R, Li Y-F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17:196–203.
  • Reis RS, Eamens AL, Waterhouse PM. Missing pieces in the puzzle of plant MicroRNAs. Trends Plant Sci. 2015;20:721–728.
  • Kumar V, Khare T, Shriram V, et al. Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant Cell Rep. 2018;37:61–75.
  • Cedillo-Jiménez CA, Hernández-Salazar M, Escobar-Feregrino T, et al. MicroRNAs sequencing for understanding the genetic regulation of plant genomes. In: Plant genomics. InTech; 2016; p. 137–144.
  • Sablok G, Pérez-Quintero ÁL, Hassan M, et al. Artificial microRNAs (amiRNAs) engineering – on how microRNA-based silencing methods have affected current plant silencing research. Biochem Biophys Res Commun. 2011;406:315–319.
  • Zhou J, Deng K, Cheng Y, et al. CRISPR-Cas9 based genome editing reveals new insights into MicroRNA function and regulation in rice. Front Plant Sci. 2017:1598.DOI:10.3389/fpls.2017.01598.
  • Kis A, Tholt G, Ivanics M, et al. Polycistronic artificial miRNA-mediated resistance to Wheat dwarf virus in barley is highly efficient at low temperature. Mol Plant Pathol. 2016;17:427–437.
  • Zhou J, Yuan M, Zhao Y, et al. Efficient deletion of multiple circle RNA loci by CRISPR‐Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice. Plant Biotechnol J. 2021;19:1240.
  • United Nations. THE 17 GOALS, 2016. https://sdgs.un.org/goals.
  • Noman A, Aqeel M. miRNA-based heavy metal homeostasis and plant growth. Environ Sci Pollut Res. 2017;24:10068–10082.
  • Srivastava S, Suprasanna P. MicroRNAs: tiny, powerful players of metal stress responses in plants. Plant Physiol Biochem. 2021;166:928–938.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854.
  • Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–862.
  • Shriram V, Kumar V, Devarumath RM, et al. MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci. 2016;7. Epub ahead of print 14 June 2016. DOI:10.3389/fpls.2016.00817.
  • Reinhart BJ. MicroRNAs in plants. Genes Dev. 2002;16:1616–1626.
  • Chinnusamy V, Zhu J, Zhou T, et al. Small Rnas: big role in abiotic stress tolerance of plants. In: Jenks M.A., Hasegawa P.M., Jain S.M. (eds) Advances in molecular breeding toward drought and salt tolerant crops. Dordrecht: Springer Netherlands; 2007; p. 223–260.
  • Budak H, Akpinar BA. Plant miRNAs: biogenesis, organization and origins. Funct Integr Genomics. 2015;15:523–531.
  • Rogers K, Chen X. Biogenesis, turnover, and mode of action of plant MicroRNAs. Plant Cell. 2013;25:2383–2399.
  • Bologna NG, Voinnet O. The diversity, biogenesis, and activities of endogenous silencing small RNAs in arabidopsis. Annu Rev Plant Biol. 2014;65:473–503.
  • Werner S, Wollmann H, Schneeberger K, et al. Structure determinants for accurate processing of miR172a in arabidopsis thaliana. Curr Biol. 2010;20:42–48.
  • Chaves SS, Fernandes-Brum CN, Silva GFF, et al. New insights on coffea miRNAs: features and evolutionary conservation. Appl Biochem Biotechnol. 2015;177:879–908.
  • Stepien A, Knop K, Dolata J, et al. Posttranscriptional coordination of splicing and miRNA biogenesis in plants. Wiley Interdiscip Rev RNA. 2017;8:e1403.
  • Ding Y, Ding L, Xia Y, et al. Emerging roles of microRNAs in plant heavy metal tolerance and homeostasis. J Agric Food Chem. 2020;68:1958–1965.
  • Zhou X, Khare T, Kumar V. Recent trends and advances in identification and functional characterization of plant miRNAs. Acta Physiol Plant. 2020;42:25.
  • D’Ario M, Griffiths-Jones S, Kim M. Small RNAs: big impact on plant development. Trends Plant Sci. 2017;22:1056–1068.
  • Patel P, Yadav K, Ganapathi TR, et al. Plant miRNAome: cross talk in abiotic stressful times. pp. 25–52.
  • Khare T, Shriram V, Kumar V. RNAi technology: the role in development of abiotic stress-tolerant crops. In: Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Elsevier, Academic Press; 2018; p. 117–133.
  • Kumar V, Datir S, Khare T, Shriram V. Advances in biotechnological tools: improving abiotic stress tolerance in rice. In: Hasanuzzaman M., Fujita M., Nahar K., Biswas J. (eds)  Advances in rice research for abiotic stress tolerance 2019; pp. 839-867. DOI:10.1016/B978-0-12-814332-2.00030-7. Duxford, United Kingdom: Woodhead Publishing.
  • Si X, Wang Q, Zhang L, et al. Survey of gene splicing algorithms based on reads. Bioengineered. 2017;8:750–758.
  • Sanger F, Coulson AR. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol. 1975;94:441–448.
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci. 1977;74:5463–5467.
  • Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. pp. 499–560.
  • Kulski JK. Next-generation sequencing — an overview of the history, tools, and “Omic” applications. In: Kulski J. (eds) Next generation sequencing - advances, applications and challenges. Epub ahead of print 14 January 2016; pp. 3-60. Intechopen. DOI:10.5772/61964.
  • Lin SS, Chen Y, Lu MYJ. Degradome sequencing in plants. Methods Mol Biol. 2019;1932:197–213.
  • Selvi A, Devi K, Manimekalai R, et al. High-throughput miRNA deep sequencing in response to drought stress in sugarcane. 3 Biotech. 2021;11:312.
  • Xu J, Zheng Y, Pu S, et al. Third-generation sequencing found LncRNA associated with heat shock protein response to heat stress in Populus qiongdaoensis seedlings. BMC Genomics. 2020;21:1–14.
  • Diao S, Ding X, Luan Q, et al. A complete transcriptional landscape analysis of Pinus elliottii Engelm. Using third-generation sequencing and comparative analysis in the Pinus phylogeny. Forests. 10. Epub ahead of print 2019. DOI:10.3390/f10110942.
  • Samad AFA, Nazaruddin N, Murad AMA, et al. Deep sequencing and in silico analysis of small RNA library reveals novel miRNA from leaf Persicaria minor transcriptome. 3 Biotech. 2018;8. Epub ahead of print 2018. DOI:10.1007/s13205-018-1164-8.
  • Prakash VN, Jadeja VJ. Identification and characterization of miRNA transcriptome in Jatropha curcas by high-throughput sequencing. Plant Genet. 2018;15:44–50.
  • Bao H, Chen M, Chen H, et al. Transcriptome-wide identification of miRNA targets and a TAS3-homologous gene in Populus by degradome sequencing. Genes Genomics. 2019;41:849–861.
  • Yu L, Zhou L, Liu W, et al. Identification of drought resistant miRNA in Macleaya cordata by high-throughput sequencing. Arch Biochem Biophys. 2020;684:108300.
  • Zhang H, Liu X, Yang X, et al. miRNA–mRNA integrated analysis reveals roles for miRNAs in a typical halophyte, reaumuria soongorica, during seed germination under salt stress. Plants. 2020;9:1–16.
  • Cai C, Li C, Sun R, et al. Small RNA and degradome deep sequencing reveals important roles of microRNAs in cotton (Gossypium hirsutum L.) response to root-knot nematode Meloidogyne incognita infection. Genomics. 2021;113:1146–1156.
  • Zhang J, Xu C, Liu K, et al. Deep sequencing discovery and profiling of known and novel miRNAs produced in response to DNA damage in rice. Int J Mol Sci. 2021;22:9958.
  • Wu Y, Zheng L, Bing J, et al. Deep sequencing of small RNA reveals the molecular regulatory network of AtENO2 regulating seed germination. Int J Mol Sci. 2021;22:5088.
  • Jamla M, Khare T, Joshi S, et al. Omics approaches for understanding heavy metal responses and tolerance in plants. Curr Plant Biol. 2021;27:100213.
  • Zhang Z, Yu J, Li D, et al. PMRD: plant microRNA database. Nucleic Acids Res. 2010;38:D806–D813.
  • Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2018;46:D239–D245.
  • Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–D131.
  • Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47:D155–D162.
  • Szcześniak MW, Makałowska I. miRNEST 2.0: a database of plant and animal microRNAs. Nucleic Acids Res. 2014;42:D74–D77.
  • Sun X, Dong B, Yin L, et al. PMTED: a plant microRNA target expression database. BMC Bioinformatics. 2013;14:174.
  • Bonnet E, He Y, Billiau K, et al. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics. Bioinformatics. 2010;26:1566–1568.
  • Zhang P, Meng X, Chen H, et al. PlantCircNet: a database for plant circRNA-miRNA-mRNA regulatory networks. Database (Oxford). 2017;2017:1–8.
  • Zhang J, Hao Z, Yin S, et al. GreenCircRNA: a database for plant circRNAs that act as miRNA decoys. Database. 2020;2020:1–9.
  • Lorenzetti APR, de Antonio GYA, Paschoal AR, et al. PlanTE-MIR DB: a database for transposable element-related microRNAs in plant genomes. Funct Integr Genomics. 2016;16:235–242.
  • Guo Z, Kuang Z, Wang Y, et al. PmiREN: a comprehensive encyclopedia of plant miRNAs. Nucleic Acids Res. 2020;48:D1114–D1121.
  • Yu D, Lu J, Shao W, et al. MepmiRDB: a medicinal plant microRNA database. Database. 2019;2019:1–6.
  • Liu J, Liu X, Zhang S, et al. TarDB: an online database for plant miRNA targets and miRNA-triggered phased siRNAs. BMC Genomics. 2021;22:348.
  • Chen C, Li J, Feng J, et al. sRNAanno—a database repository of uniformly annotated small RNAs in plants. Hortic Res. 8. Epub ahead of print 2021. DOI:10.1038/s41438-021-00480-8.
  • Vasconcelos AM, Carmo MB, Ferreira B, et al. IsomiR_window: a system for analyzing small-RNA-seq data in an integrative and user-friendly manner. BMC Bioinformatics. 2021;22:37.
  • Huang H-Y, Lin Y-C-D, Li J, et al. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic Acids Res. Epub ahead of print 24 October 2019. DOI:10.1093/nar/gkz896.
  • Fei Y, Wang R, Li H, et al. DPMIND: degradome-based plant miRNA-target interaction and network database. Bioinformatics. 2018;34:1618–1620.
  • Remita MA, Lord E, Agharbaoui Z, et al. A novel comprehensive wheat miRNA database, including related bioinformatics software. Curr Plant Biol. 2016;7–8:31–33.
  • Zhang Y, Zang Q, Xu B, et al. IsomiR bank: a research resource for tracking IsomiRs. Bioinformatics. 2016;32:2069–2071.
  • Li J-H, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–D97.
  • Yi X, Zhang Z, Ling Y, et al. PNRD: a plant non-coding RNA database. Nucleic Acids Res. 2015;43:D982–D989.
  • Zhang S, Yue Y, Sheng L, et al. PASmiR: a literature-curated database for miRNA molecular regulation in plant response to abiotic stress. BMC Plant Biol. 2013;13:33.
  • Meng Y, Gou L, Chen D, et al. PmiRKB: a plant microRNA knowledge base. Nucleic Acids Res. 2011;39:D181–D187.
  • Liu H, Jin T, Liao R, et al. miRFANs: an integrated database for Arabidopsis thaliana microRNA function annotations. BMC Plant Biol. 2012;12:68.
  • Cagirici HB, Sen TZ, Budak H. mirMachine: a one-stop shop for plant miRNA annotation. J Vis Exp. 2021; Epub ahead of print 1 May 2021. doi:10.3791/62430
  • Russell PH, Vestal B, Shi W, et al. miR-MaGiC improves quantification accuracy for small RNA-seq. BMC Res Notes. 2018;11:296.
  • Kuang Z, Wang Y, Li L, et al. miRDeep-P2: accurate and fast analysis of the microRNA transcriptome in plants. Bioinformatics. 2019;35:2521–2522.
  • Ma X, Liu C, Gu L, et al. TarHunter, a tool for predicting conserved microRNA targets and target mimics in plants. Bioinformatics. 2018;34:1574–1576.
  • Vitsios DM, Kentepozidou E, Quintais L, et al. Mirnovo: genome-free prediction of microRNAs from small RNA sequencing data and single-cells using decision forests. Nucleic Acids Res. 2017;45:e177–e177.
  • Yang K, Sablok G, Qiao G, et al. isomiR2Function: an integrated workflow for identifying MicroRNA variants in plants. Front Plant Sci. 8. Epub ahead of print 21 March 2017. DOI:10.3389/fpls.2017.00322.
  • Tav C, Tempel S, Poligny L, et al. miRNAFold: a web server for fast miRNA precursor prediction in genomes. Nucleic Acids Res. 2016;44:W181–W184.
  • Urgese G, Paciello G, Acquaviva A, et al. isomiR-SEA: an RNA-Seq analysis tool for miRNAs/isomiRs expression level profiling and miRNA-mRNA interaction sites evaluation. BMC Bioinformatics. 2016;17:148.
  • Vlachos IS, Zagganas K, Paraskevopoulou MD, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015;43:W460–W466.
  • Bandyopadhyay S, Ghosh D, Mitra R, et al. MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets. Sci Rep. 2015;5:8004.
  • Zhang Z, Jiang L, Wang J, et al. MTide: an integrated tool for the identification of miRNA-target interaction in plants. Bioinformatics. 2015;31:290–291.
  • An J, Lai J, Sajjanhar A, et al. miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinformatics. 2014;15:275.
  • Hackenberg M, Rodriguez-Ezpeleta N, Aransay AM. miRanalyzer: an update on the detection and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids Res. 2011;39:W132–W138.
  • Wang W-C, Lin F-M, Chang W-C, et al. miRExpress: analyzing high-throughput sequencing data for profiling microRNA expression. BMC Bioinformatics. 2009;10:328.
  • Kertesz M, Iovino N, Unnerstall U, et al. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39:1278–1284.
  • Wang X, Zhang J, Li F, et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics. 2005;21:3610–3614.
  • Llave C, Kasschau KD, Rector MA, et al. Endogenous and silencing-associated small RNAs in plants[W]. Plant Cell. 2002;14:1605–1619.
  • Loher P, Rigoutsos I. Interactive exploration of RNA22 microRNA target predictions. Bioinformatics. 2012;28:3322–3323.
  • Dai X, Zhuang Z, Zhao PX. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018;46:W49–W54.
  • Rusinov V, Baev V, Minkov IN, et al. MicroInspector: a web tool for detection of miRNA binding sites in an RNA sequence. Nucleic Acids Res. 2005;33:696–700.
  • Patel P, Ramachandruni SD, Kakrana A, et al. miTRATA: a web-based tool for mi croRNA Tr uncation a nd T ailing A nalysis. Bioinformatics. 2016;32:450–452.
  • Thody J, Moulton V, Mohorianu I. PAREameters: a tool for computational inference of plant miRNA-mRNA targeting rules using small RNA and degradome sequencing data. Nucleic Acids Res. 2020;48:2258–2270.
  • Zhang T, Zhai J, Zhang X, et al. Interactive web-based annotation of plant MicroRNAs with iwa-miRNA. Genomics Proteomics Bioinformatics. Epub ahead of print July 2021. DOI:10.1016/j.gpb.2021.02.010.
  • Wani SH, Sah SK, Hossain MA, Kumar V, Balachandran SM. Transgenic approaches for abiotic stress tolerance in crop plants. In: Al-Khayri J., Jain S., Johnson D. (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Cham: Springer International Publishing. 2016: p. 345–396.
  • Basso MF, Ferreira PCG, Kobayashi AK, et al. MicroRNAs and new biotechnological tools for its modulation and improving stress tolerance in plants. Plant Biotechnol J. 2019;17:1482–1500.
  • Mujjassim NE, Mallik M, Krishna Kumar Rathod N, et al. Cisgenesis and intragenesis a new tool for conventional plant breeding: a review. J Pharmacogn Phytochem. 2019;8:2485–2489.
  • Rommens CM, Haring MA, Swords K, et al. The intragenic approach as a new extension to traditional plant breeding. Trends Plant Sci. 2007;12:397–403.
  • Cunningham FJ, Goh NS, Demirer GS, et al. Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol. 2018;36:882–897.
  • Joga MR, Zotti MJ, Smagghe G, et al. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: what we know so far. Front Physiol. 2016;7. Epub ahead of print 17 November 2016. DOI:10.3389/fphys.2016.00553.
  • McLoughlin AG, Wytinck N, Walker PL, et al. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea. Sci Rep. 2018;8:7320.
  • Hendrix B, Zheng W, Bauer MJ, et al. Topically delivered 22 nt siRNAs enhance RNAi silencing of endogenous genes in two species. bioRxiv. Epub ahead of print 2020. DOI:10.1101/2020.04.20.052076.
  • Zhang N, Zhang D, Chen SL, et al. Engineering artificial MicroRNAs for multiplex gene silencing and simplified transgenic screen. Plant Physiol. 2018;178:989–1001.
  • Van Vu T, Nang Do V. Customization of artificial microRNA design. Methods Mol Biol. 2017;1509:235–243.
  • Gualtieri C, Leonetti P, Macovei A. Plant miRNA cross-kingdom transfer targeting parasitic and mutualistic organisms as a tool to advance modern agriculture. Front Plant Sci. 2020;11:1–7.
  • Reichel M, Millar AA. Specificity of plant microRNA target MIMICs: cross-targeting of miR159 and miR319. J Plant Physiol. 2015;180:45–48.
  • Reichel M, Li Y, Li J, et al. Inhibiting plant microRNA activity: molecular SPONGE s, target MIMICs and STTMs all display variable efficacies against target microRNAs. Plant Biotechnol J. 2015;13:915–926.
  • Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17:272–283.
  • Castro Á, Quiroz D, Sánchez E, et al. Synthesis of an artificial Vitis vinifera miRNA 319e using overlapping long primers and its application for gene silencing. J Biotechnol. 2016;233:200–210.
  • Von Born P, Bernardo-Faura M, Rubio-Somoza I. An artificial miRNA system reveals that relative contribution of translational inhibition to miRNA-mediated regulation depends on environmental and developmental factors in Arabidopsis thaliana. PLoS One. 2018;13:1–14.
  • Shanmugavadivel PS, Prakash C, Amitha Mithra SV. Molecular approaches for dissecting and improving drought and heat tolerance in rice. In: Hasanuzzaman M., Fujita M., Nahar K., Biswas J. (eds)  Advances in rice research for abiotic stress tolerance. Duxford, United Kingdom:Woodhead Publishing. 2019; p. 839–867.
  • Jain M. Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Front Plant Sci. 6. Epub ahead of print 27 May 2015. DOI:10.3389/fpls.2015.00375.
  • Jaganathan D, Ramasamy K, Sellamuthu G, et al. CRISPR for crop improvement: an update review. Front Plant Sci. 2018;9. Epub ahead of print 17 July 2018. DOI:10.3389/fpls.2018.00985.
  • Tiwari P, Khare T, Shriram V, et al. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol Adv. 2021;48:107729.
  • Perez Rojo F, Nyman RKM, Johnson AAT, et al. CRISPR-Cas systems: ushering in the new genome editing era. Bioengineered. 2018;9:214–221.
  • Liu X, Wu S, Xu J, et al. Application of CRISPR/Cas9 in plant biology. Acta Pharm Sin B. 2017;7:292–302.
  • Chung PJ, Chung H, Oh N, et al. Efficiency of recombinant CRISPR/rCas9-mediated miRNA gene editing in rice. Int J Mol Sci. 2020;21:1–14.
  • Jayasundara S, Lokuge S, Ihalagedara P, et al. Machine learning for plant microRNA prediction: a systematic review, 2021. http://arxiv.org/abs/2106.15159.
  • Asefpour Vakilian K. Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Sci Rep. 2020;10:1–10.
  • Stegmayer G, Di Persia LE, Rubiolo M, et al. Predicting novel microRNA: a comprehensive comparison of machine learning approaches. Brief Bioinform. 2019;20:1607–1620.
  • Bugnon LA, Yones C, Milone DH, et al. Genome-wide discovery of pre-miRNAs: comparison of recent approaches based on machine learning. Brief Bioinform. 2021;22:1–8.
  • Xuan P, Guo M, Liu X, et al. PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics. 2011;27:1368–1376.
  • Wu Y, Wei B, Liu H, et al. MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics. 2011;12:107.
  • Bradley J-C, Samuel B. SMIRP-A systems approach to laboratory automation. JALA J Assoc Lab Autom. 2000;5:48–53.
  • Rodziewicz P, Swarcewicz B, Chmielewska K, et al. Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant. 2014;36:1–19.
  • Kaur N, Kaur G, Pati PK. Deciphering strategies for salt stress tolerance in rice in the context of climate change. In: Hasanuzzaman M., Fujita M., Nahar K., Biswas J. (eds) Advances in rice research for abiotic stress tolerance. Duxford, United Kingdom: Woodhead Publishing. 2019; p. 113–132.
  • Azad S, Rajeevan M. Possible shift in the ENSO-Indian monsoon rainfall relationship under future global warming. Sci Rep. 2016;6:3–8.
  • Zhou S, Huang G, Huang P. Changes in the East Asian summer monsoon rainfall under global warming moisture budget decompositions and the sources of uncertainty. Clim Dyn. 2018;51:1363–1373.
  • Hajyzadeh M, Turktas M, Khawar KM, et al. miR408 overexpression causes increased drought tolerance in chickpea. Gene. 2015;555:186–193.
  • Hang N, Shi T, Liu Y, et al. Overexpression of Os-microRNA408 enhances drought tolerance in perennial ryegrass. Physiol Plant. 2021;172:733–747.
  • Ferdous J, Whitford R, Nguyen M, et al. Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Funct Integr Genomics. 2017;17:279–292.
  • Visentin I, Pagliarani C, Deva E, et al. A novel strigolactone‐miR156 module controls stomatal behaviour during drought recovery. Plant Cell Environ. 2020;43:1613–1624.
  • Wang K, Liu Y, Teng F, et al. Heterogeneous expression of Osa-MIR156bc increases abiotic stress resistance and forage quality of alfalfa. Crop J. 2021;9:1135–1144.
  • Zhou Y, Liu W, Li X, et al. Integration of sRNA, degradome, transcriptome analysis and functional investigation reveals gma-miR398c negatively regulates drought tolerance via GmCSDs and GmCCS in transgenic Arabidopsis and soybean. BMC Plant Biol. 2020;20:190.
  • Aamir M, Rai KK, Dubey MK, et al. Impact of climate change on soil carbon exchange, ecosystem dynamics, and plant-microbe interactions. Duxford, United Kingdom: Woodhead Publishing . 2019. DOI:10.1016/B978-0-12-816483-9.00020-7.
  • Wani SH, Kumar V, Khare T, et al. Engineering salinity tolerance in plants: progress and prospects. Planta. 2020;251:76.
  • Ma Y, Xue H, Zhang F, et al. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression. Plant Biotechnol J. 2021;19:311–323.
  • Guo X, Niu J, Cao X. Heterologous expression of Salvia miltiorrhiza MicroRNA408 enhances tolerance to salt stress in Nicotiana benthamiana. Int J Mol Sci. 2018;19:3985.
  • Faisal A-RM, Biswas S, Zerin T, et al. Downregulation of the DST transcription factor using artificial microRNA to increase yield, salt and drought tolerance in rice. Am J Plant Sci. 2017;8:2219–2237.
  • Yue E, Cao H, Liu B. OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants. 2020;9:1337.
  • Yang B, Tang J, Yu Z, et al. Light stress responses and prospects for engineering light stress tolerance in crop plants. J Plant Growth Regul. 2019;38:1489–1506.
  • Kosobryukhov A, Khudyakova A, Kreslavski V. Impact of UV radiation on photosynthetic apparatus: adaptive and damaging mechanisms. In: Hasanuzzaman M. (eds) Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Singapore: Springer. p. 555–576.
  • Zhou B, Leng J, Ma Y, et al. BrmiR828 targets BrPAP1, BrMYB82, and BrTAS4 Involved in the light induced anthocyanin biosynthetic pathway in Brassica rapa. Int J Mol Sci. 2020;21:4326.
  • Li T, Lian H, Li H, et al. HY5 regulates light‐responsive transcription of microRNA163 to promote primary root elongation in Arabidopsis seedlings. J Integr Plant Biol. 2021;63:1437–1450.
  • Jalmi SK, Bhagat PK, Verma D, et al. Traversing the links between heavy metal stress and plant signaling. Front Plant Sci. 2018;9:1–21.
  • Nechita C, Iordache AM, Lemr K, et al. Evidence of declining trees resilience under long term heavy metal stress combined with climate change heating. J Clean Prod. 2021;317:128428.
  • Ozaki H, Watanabe I, Kuno K. Investigation of the heavy metal sources in relation to automobiles. Water Air Soil Pollut. 2004;157:209–223.
  • Adamiec E, Jarosz-Krzemińska E, Wieszała R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ Monit Assess. 2016;188:369.
  • Xu Z, Lei Y, Patel J. Bioremediation of soluble heavy metals with recombinant Caulobacter crescentus. Bioeng Bugs. 2010;1:207–212.
  • Ding Y, Gong S, Wang Y, et al. MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol. 2018;177:1691–1703.
  • Shen C. Overexpression of a novel microRNA IamiR-4-3p from water spinach (Ipomoea aquatica Forsk.) increased Cd toxicity and accumulation in Arabidopsis thaliana.
  • He L, Wang H, Zhao Q, et al. Tomato grafting onto Torubamu (Solanum melongena): miR166a and miR395b reduce scion Cd accumulation by regulating sulfur transport. Plant Soil. 2020;452:267–279.
  • Liu L, Yin H, Liu Y, et al. Analysis of cadmium-stress-induced microRNAs and their targets reveals bra-miR172b-3p as a potential Cd2+-specific resistance factor in Brassica juncea. Processes. 2021;9:1099.
  • Manavella PA, Yang SW, Palatnik J. Keep calm and carry on: mi RNA biogenesis under stress. Plant J. 2019. tpj.14369. DOI:10.1111/tpj.14369.
  • Demirel U, Morris WL, Ducreux LJM, et al. Physiological, biochemical, and transcriptional responses to single and combined abiotic stress in stress-tolerant and stress-sensitive potato genotypes. Front Plant Sci. 2020;11. Epub ahead of print 27 February 2020. DOI:10.3389/fpls.2020.00169.
  • Raza A, Su W, Gao A, et al. Catalase (CAT) gene family in rapeseed (Brassica napus L.): genome-wide analysis, identification, and expression pattern in response to multiple hormones and abiotic stress conditions. Int J Mol Sci. 2021;22:4281.
  • Sanan-Mishra N, Tripathi A, Goswami K, et al. ARMOUR – a rice miRNA: mRNA interaction resource. Front Plant Sci. 2018;9. Epub ahead of print 8 May 2018. DOI:10.3389/fpls.2018.00602.
  • Chen L, Heikkinen L, Wang C, et al. Trends in the development of miRNA bioinformatics tools. Brief Bioinform. 2019;20:1836–1852.
  • Kamthan A, Chaudhuri A, Kamthan M, et al. Small RNAs in plants: recent development and application for crop improvement. Front Plant Sci. 2015;6. Epub ahead of print 2 April 2015. DOI:10.3389/fpls.2015.00208.
  • Kang T, Yu C-Y, Liu Y, et al. Subtly manipulated expression of ZmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants. Front Plant Sci. 2019;10. Epub ahead of print 10 January 2020. DOI:10.3389/fpls.2019.01664.
  • Li W, Wang T, Zhang Y, et al. Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. J Exp Bot. 2016;67:175–194.
  • Hoegh-Guldberg O, Jacob D, Taylor M, et al. Impacts of 1.5°C Global Warming on Natural and Human Systems. In: global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. 2019.
  • Li B, Gao Z, Liu X, et al. Transcriptional profiling reveals a time-of-day-specific role of REVEILLE 4/8 in regulating the first wave of heat shock–induced gene expression in arabidopsis. Plant Cell. 2019;31:2353–2369.
  • Arshad M, Puri A, Simkovich AJ, et al. Label-free quantitative proteomic analysis of alfalfa in response to microRNA156 under high temperature. BMC Genomics. 21. Epub ahead of print 1 December 2020. DOI:10.1186/s12864-020-07161-1.
  • Cao X, Wu Z, Jiang F, et al. Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genomics. 2014;15:1130.
  • Zhou R, Wang Q, Jiang F, et al. Identification of miRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis. Sci Rep. 2016;6:1–13.
  • Valiollahi E, Farsi M, Kakhki AM. Sly-miR166 and Sly-miR319 are components of the cold stress response in Solanum lycopersicum. Plant Biotechnol Rep. 2014;8:349–356.
  • Shi X, Jiang F, Wen J, et al. Overexpression of Solanum habrochaites microRNA319d (sha-miR319d) confers chilling and heat stress tolerance in tomato (S. lycopersicum). BMC Plant Biol. 2019;19:1–17.
  • Zhao Y, Xie J, Wang S, et al. Synonymous mutation in growth regulating factor 15 of miR396a target sites enhances photosynthetic efficiency and heat tolerance in poplar. J Exp Bot. 2021;72:4502–4519.
  • Şanlı BA, Öztürk Gökçe ZN. Investigating effect of miR160 through overexpression in potato cultivars under single or combination of heat and drought stresses. Plant Biotechnol Rep. 2021;15:335–348.
  • Lin J-S, Kuo -C-C, Yang I-C, et al. MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis. Front Plant Sci. 9. Epub ahead of print 1 February 2018. DOI:10.3389/fpls.2018.00068.
  • Saminathan T, Alvarado A, Lopez C, et al. Elevated carbon dioxide and drought modulate physiology and storage-root development in sweet potato by regulating microRNAs. Funct Integr Genomics. 2019;19:171–190.
  • Abebe A, Pathak H, Singh SD, et al. Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north-west India. Agric Ecosyst Environ. 2016;218:66–72.
  • Pan J, Huang D, Guo Z, et al. Overexpression of microRNA408 enhances photosynthesis, growth, and seed yield in diverse plants. J Integr Plant Biol. 2018;60:323–340.
  • Zhang J-P, Yu Y, Feng Y-Z, et al. MiR408 regulates grain yield and photosynthesis via a phytocyanin protein. Plant Physiol. 2017;175:1175–1185.
  • Wang W, Liu D, Chen D, et al. MicroRNA414c affects salt tolerance of cotton by regulating reactive oxygen species metabolism under salinity stress. RNA Biol. 2019;16:362–375.
  • Yu Y, Ni Z, Wang Y, et al. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Sci. 2019;285:68–78.
  • Sun M, Jing Y, Wang X, et al. Gma-miR1508a confers dwarfing, cold tolerance, and drought sensitivity in soybean. Mol Breed. 40. Epub ahead of print 2020. DOI:10.1007/s11032-020-01116-w.
  • Chen L, Meng J, Luan Y. miR1916 plays a role as a negative regulator in drought stress resistance in tomato and tobacco. Biochem Biophys Res Commun. 2019;508:597–602.
  • Zhao J, Yuan S, Zhou M, et al. Transgenic creeping bentgrass overexpressing Osa‐miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnol J. 2019;17:233–251.
  • Sun Z, Shu L, Zhang W, et al. Cca-miR398 increases copper sulfate stress sensitivity via the regulation of CSD mRNA transcription levels in transgenic Arabidopsis thaliana. PeerJ. 2020;8:e9105. Epub ahead of print 2020.
  • Cui N, Sun X, Sun M, et al. Overexpression of OsmiR156k leads to reduced tolerance to cold stress in rice (Oryza Sativa). Mol Breed. 2015;35:214.
  • Li Y, Li X, Yang J, et al. Natural antisense transcripts of MIR398 genes suppress microR398 processing and attenuate plant thermotolerance. Nat Commun. 2020;11:5351.