3,352
Views
6
CrossRef citations to date
0
Altmetric
Review

Sophorolipid: a glycolipid biosurfactant as a potential therapeutic agent against COVID-19

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 9550-9560 | Received 18 Aug 2021, Accepted 16 Oct 2021, Published online: 14 Dec 2021

References

  • World Health Organization. (2020). Coronavirus disease (COVID-19) advice for the public. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
  • Gorbalenya AE, Baker SC, Baric RS, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–544.
  • Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. Jama. 2020;323(13):1239.
  • Pascarella G, Strumia A, Piliego C, et al. COVID-19 diagnosis and management: a comprehensive review. J Intern Med. 2020;288(2):192–206.
  • Guo, YR., Cao, QD., Hong, ZS. et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. Military Med Res7, 11 (2020). https://doi.org/10.1186/s40779-020-00240–0
  • Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564–1567.
  • Bazant MZ, Bush JWM. A guideline to limit indoor airborne transmission of COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 2021;118(17):e2018995118.
  • Greenhalgh T, Jimenez JL, Prather KA, et al. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet. 2021;397(10285):1603–1605.
  • Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1–9.
  • Yousefifard M, Zali A, Mohamed Ali K, et al. Antiviral therapy in management of COVID-19: a systematic review on current evidence. Arch Acad Emergency Med. 2020; 82: 45.http://journals.sbmu.ac.ir/aaem
  • Centers for Disease Control and Prevention (CDC). Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19) 2021; Updated on 16 February 2021. cited 2021 Aug 03. https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html
  • National Institutes of Health (NIH). USA. COVID-19 Treatment Guidelines. 2021;. cited 2021 Aug 03. https://www.covid19treatmentguidelines.nih.gov/tables/table-2e/
  • Shakaib B, Zohra T, Ikram A, et al. A comprehensive review on clinical and mechanistic pathophysiological aspects of COVID-19 Malady: how far have we come? Virol J. 2021;18(1):1–16.
  • World Health Organization. Coronavirus disease (COVID-19): hydroxychloroquine. Dated 30 April, 2021. 2021b; cited 2021 Aug 03. https://www.who.int/news-room/q-a-detail/coronavirus-disease-(covid-19)-hydroxychloroquine
  • World Health Organization. WHO advises that ivermectin only be used to treat COVID-19 within clinical trials. 31 March 2021.2021c; cited 2021 Aug 03. https://www.who.int/news-room/feature-stories/detail/who-advises-that-ivermectin-only-be-used-to-treat-covid-19-within-clinical-trials
  • Li H, Zhou Y, Zhang M, et al. Updated approaches against SARS-CoV-2. Antimicrob Agents Chemother. 2020;64(6):1–7.
  • Rosa SGV, Santos WC. Clinical trials on drug repositioning for COVID-19 treatment. Rev Panam Salud Pública. 2020;44:1.
  • Baglivo M, Baronio M, Natalini G, et al. Natural small molecules as inhibitors of coronavirus lipid-dependent attachment to host cells: a possible strategy for reducing SARS-COV-2 infectivity? Acta Biomed. 2020;91(1):161–164.
  • Daverey A, Dutta K. COVID-19: eco-friendly hand hygiene for human and environmental safety. J Environ Chem Eng. 2021;9(2):104754.
  • Jin L, Black W, Sawyer T. Application of environment-friendly rhamnolipids against transmission of enveloped viruses like sars-cov2. Viruses. 2021;13(2):2.
  • Smith ML, Gandolfi S, Coshall PM, et al. Biosurfactants: a Covid-19 Perspective. Front Microbiol. 2020;11(June):1–8.
  • Subramaniam MD, Venkatesan D, Iyer M, et al. Biosurfactants and anti-inflammatory activity: a potential new approach towards COVID-19. Curr Opin Environ Sci Health. 2020;17:72–81.
  • Ejike Ogbonna K, Victor Agu C, Okonkwo CC, et al. Use of spondias mombin fruit pulp as a substrate for biosurfactant production. Bioengineered. 2021;12(1):1–12.
  • Patel S, Homaei A, Patil S, et al. Microbial biosurfactants for oil spill remediation: pitfalls and potentials. Appl Microbiol Biotechnol. 2019;103(1):27–37.
  • Gudiña EJ, Rangarajan V, Sen R, et al. Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci. 2013;34(12):667–675.
  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, et al. Environmental applications of biosurfactants: recent advances. Int J Mol Sci. 2011;12(1):633–654.
  • Shah V, Daverey A. Effects of sophorolipids augmentation on the plant growth and phytoremediation of heavy metal contaminated soil. J Clean Prod. 2021;280:124406.
  • Huang X, Lu Z, Zhao H, et al. Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus, porcine parvovirus, newcastle disease virus and infectious bursal disease virus in vitro. Int J Pept Res Ther. 2006;12(4):373–377.
  • Kang BR, Park JS, Jung WJ. Antiviral activity by lecithin-induced fengycin lipopeptides as a potent key substrate against Cucumber mosaic virus. Microb Pathog. 2021;155(December2020):104910.
  • Huang C, Hu C, Sun G, et al. Antimicrobial finish of cotton fabrics treated by sophorolipids combined with 1,2,3,4-butanetetracarboxyic acid. Cellulose. 2020;27(5):2859–2872.
  • Daverey A, Pakshirajan K. Sophorolipids from Candida bombicola using mixed hydrophilic substrates: production, purification and characterization. Colloids Surf B Biointerfaces. 2010;79(1):246–253.
  • Elshafie AE, Joshi SJ, Al-Wahaibi YM, et al. Sophorolipids production by candida bombicola ATCC 22214 and its potential application in microbial enhanced oil recovery. Front Microbiol. 2015;6(3):743–753.
  • Haggag Y, Elshikh M, El-Tanani M, et al. Nanoencapsulation of sophorolipids in PEGylated poly(lactide-co-glycolide) as a novel approach to target colon carcinoma in the murine model. Drug Deliv Transl Res. 2020;10(5):1353–1366.
  • Ribeiro IA, Bronze MR, Castro MF, et al. Design of selective production of sophorolipids by Rhodotorula bogoriensis through nutritional requirements. J Mol Recog. 2012;25(11):630–640.
  • Jiménez-Peñalver P, Rodríguez A, Daverey A, et al. Use of wastes for sophorolipids production as a transition to circular economy: state of the art and perspectives. Rev Environ Sci Biotechnol. 2019;18(3):413–435.
  • Chen J, Song X, Zhang H, et al. Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Appl Microbiol Biotechnol. 2006;72(1):52–59.
  • Gaur VK, Regar RK, Dhiman N, et al. Biosynthesis and characterization of sophorolipid biosurfactant by Candida spp.: application as food emulsifier and antibacterial agent. Bioresour Technol. 2019;285(April):121314.
  • Haque F, Verma NK, Alfatah M, et al. Sophorolipid exhibits antifungal activity by ROS mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways in: Candida albicans. RSC Adv. 2019;9(71):41639–41648.
  • Mendes RM, Francisco AP, Carvalho FA, et al. Fighting S. aureus catheter-related infections with sophorolipids: electing an antiadhesive strategy or a release one? Colloids Surf B Biointerfaces. 2021;208:112057.
  • Sen S, Borah SN, Kandimalla R, et al. Sophorolipid biosurfactant can control cutaneous dermatophytosis caused by trichophyton mentagrophytes. Front Microbiol. 2020;11(March):1–15.
  • Silveira VAI, Nishio EK, Freitas CAUQ, et al. Production and antimicrobial activity of sophorolipid against Clostridium perfringens and Campylobacter jejuni and their additive interaction with lactic acid. Biocatal Agric Biotechnol. 2019;21(August):101287.
  • Tang Y, Ma Q, Du Y, et al. Efficient purification of sophorolipids via chemical modifications coupled with extractions and their potential applications as antibacterial agents. Sep Purif Technol. 2020;245(April):116897.
  • De Graeve M, De Maeseneire SL, Roelants SL, et al. Starmerella bombicola, an industrially relevant, yet fundamentally underexplored yeast. FEMS Yeast Res. 2018;18(7):foy072.
  • Šipiczki M, Ciani M, Csoma H. Taxonomic reclassification of Candida stellata DBVPG 3827. Folia Microbiol. 2005;50:494–498.
  • Azim A, Shah V, Doncel GF, et al. Amino acid conjugated sophorolipids: a new family of biologically active functionalized glycolipids. Bioconjug Chem. 2006;17(6):1523–1529.
  • Gross RA, Shah V. 2007. Anti-herpes virus properties of various forms of sophorolipids. In World patent 2007130738 A1.
  • Gross RA, Shah V, Doncel GF. 2004. United States Patent Application Publication Pub. No .: US 2004/0121015 A1.
  • Shah V, Doncel GF, Seyoum T, et al. Sophorolipids, microbial glycolipids with anti-human immunodeficiency virus and sperm-immobilizing activities. Antimicrob Agents Chemother. 2005;49(10):4093–4100.
  • Borsanyiova M, Patil A, Mukherji R, et al. Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiol (Praha). 2016;61(1):85–89.
  • Mohamed SK, Asif M, Nazari MV, et al. Antiangiogenic activity of sophorolipids extracted from refined bleached deodorized palm olein. Indian J Pharmacol. 2018;49(5):344–347.
  • Bluth MH, Kandil E, Mueller CM, et al. Sophorolipids block lethal effects of septic shock in rats in a cecal ligation and puncture model of experimental sepsis. Crit Care Med. 2006;34(1):E188.
  • Strauss JH, Strauss EG. The structure of viruses. Viruses and human disease. Vol. 80. Massachusetts, USA, Elsevier; 2008. p. 35–62.
  • Conley L, Tao Y, Henry A, et al. Evaluation of eco-friendly zwitterionic detergents for enveloped virus inactivation. Biotechnol Bioeng. 2017;114(4):813–820.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8.
  • Xu H, Zhong L, Deng J, et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8.
  • Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46–e47.
  • Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30–e31.
  • Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400–402.
  • Zhang R, Wang X, Ni L, et al. COVID-19: melatonin as a potential adjuvant treatment. Life Sci. 2020;250(February):117583.
  • Hagler M, Smith-Norowitz TA, Chice S, et al. Sophorolipids Decrease IgE Production in U266 Cells by Downregulation of BSAP (Pax5), TLR-2, STAT3 and IL-6. J Allergy Clin Immunol. 2007;119(1):S263.
  • Arabiyat AS, Diaz-Rodriguez P, Erndt-Marino JD, et al. Effect of poly(sophorolipid) functionalization on human mesenchymal stem cell osteogenesis and immunomodulation. ACS Appl Bio Mater. 2019;2(1):118–126.
  • Wadgaonkar R, Gross RA, Butnariu D, et al. Lung Injury Treatment Pct/US08/62759; 2010. https://patentimages.storage.googleapis.com/7d/2a/15/6473be8dbface8/US20100130442A1.pdf
  • Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335–337.
  • Fu SL, Wallner SR, Bowne WB, et al. Sophorolipids and their derivatives are lethal against human pancreatic cancer cells. J Surg Res. 2008;148(1):77–82.
  • Shao L, Song X, Ma X, et al. Bioactivities of sophorolipid with different structures against human esophageal cancer cells. J Surg Res. 2012;173(2):286–291.
  • Li H, Guo W, Ma X, et al. In vitro and in vivo anticancer activity of sophorolipids to human cervical cancer. Appl Biochem Biotechnol. 2017;181(4):1372–1387.
  • Nawale L, Dubey P, Chaudhari B, et al. Anti-proliferative effect of novel primary cetyl alcohol derived Sophorolipids against human cervical cancer cells HeLa. PLoS ONE. 2017;12(4):1–14.
  • Shen Z., Xiao Y., Kang L., et al. Genomic Diversity of Severe Acute Respiratory Syndrome-Coronavirus 2 in Patients with Coronavirus Disease 2019. Clin Infect Dis. 2020;71(15):713–720.
  • Callaghan B, Lydon H, Roelants SLKW, et al. Lactonic sophorolipids increase tumor burden in apcmin± mice. PLOS ONE. 2016;11(6):e0156845.
  • Lippi G, Sanchis-Gomar F, Henry BM. Coronavirus disease 2019 (COVID-19): the portrait of a perfect storm. Ann Transl Med. 2020;8(7):497.
  • Inès M, Dhouha G. Glycolipid biosurfactants: potential related biomedical and biotechnological applications. Carbohydr Res. 2015;416:59–69.
  • Haferburg D, Hommel R, Kleber H‐P, et al. Antiphytovirale Aktivität von Rhamnolipid aus Pseudomonas aeruginosa. Acta Biotechnologica. 1987;7(4):353–356.