10,441
Views
24
CrossRef citations to date
0
Altmetric
Reviews

A review of the therapeutic and biological effects of edible and wild mushrooms

, , , , , & show all
Pages 11239-11268 | Received 09 Sep 2021, Accepted 28 Oct 2021, Published online: 07 Dec 2021

References

  • Smith JE, Rowan NJ, Sullivan R. Medicinal mushrooms: a rapidly developing area of biotechnology for cancer therapy and other bioactivities. Biotechnol Lett. 2002;24(22):1839–1845.
  • Rousta N, Ferreira JA, Taherzadeh MJ. Production of L-carnitine-enriched edible filamentous fungal biomass through submerged cultivation. Bioengineered. 2021;12(1):358–368.
  • Blagodatski A, Yatsunskaya M, Mikhailova V, et al. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget. 2018;9(49):29259.
  • Yasin H, Zahoor M, Yousaf Z, et al. Ethnopharmacological exploration of medicinal mushroom from Pakistan. Phytomedicine. 2019;54:43–55.
  • Gmoser R, Fristedt R, Larsson K, et al. From stale bread and brewers spent grain to a new food source using edible filamentous fungi. Bioengineered. 2020;11(1):582–598.
  • Singdevsachan SK, Auroshree P, Mishra J, et al. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: a review. Bioact Carbohydrates Diet Fibre. 2016;7(1):1–14.
  • Gençcelep H, Uzun Y, Tunçtürk Y, et al. Determination of mineral contents of wild-grown edible mushrooms. Food Chem. 2009;113(4):1033–1036.
  • Lakhanpal TN, Rana M. Medicinal and nutraceutical genetic resources of mushrooms. Plant Genet Resour. 2005;3(2):288–303.
  • Okan OT, Yildiz S, Yilmaz A, et al., Wild edible mushrooms having an important potential in East Black Sea region. in: International Caucasian Forestry Symposium,  Artvin, Turkey; 2013. pp. 24–26.
  • Yu X, Liu Y, Wang Y, et al. Role of bioengineering and laborers in integration of farmland resources toward to improve dimension of sustainable agriculture in China. Bioengineered. 2020;11(1):559–571.
  • Cheung PCK. The hypocholesterolemic effect of two edible mushrooms: auricularia auricula (tree-ear) and Tremella fuciformis (white jelly-leaf) in hypercholesterolemic rats1. Nutr Res. 1996;16(10):1721–1725.
  • Manjunathan J, Kaviyarasan V. Nutrient composition in wild and cultivated edible mushroom, Lentinus tuberregium (Fr.) Tamil Nadu., India. Int Food Res J. 2011;18:809–811.
  • Wong K-H, Cheung PCK. Dietary fibers from mushroom sclerotia: 1. Preparation and physicochemical and functional properties. J Agric Food Chem. 2005;53(24):9395–9400.
  • Thakur MP, Singh HK. Mushrooms, their bioactive compounds and medicinal uses: a review. Med Plants-International J Phytomedicines Relat Ind. 2013;5:1–20.
  • Wasser SP. Medicinal mushroom science: history, current status, future trends, and unsolved problems. Int J Med Mushrooms. 2010;12(1):1–16.
  • Reis FS, Pereira E, Barros L, et al. Biomolecule profiles in inedible wild mushrooms with antioxidant value. Molecules. 2011;16(6):4328–4338.
  • Ito T, Kobayashi T, Egusa C, et al. A case of food allergy due to three different mushroom species. Allergol Int. 2020;69(1):152–153.
  • Edet UO, Ebana RUB, Etok CA, et al. Nutrient profile and phytochemical analysis of commercially cultivated oyster mushroom in Calabar, South-South Nigeria. Adv Res. 2016;7(3):1–6.
  • Gupta DK, Rühl M, Mishra B, et al. The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes. BMC Genomics. 2018;19(1):1–13.
  • Shnyreva AA, Sivolapova AB, Shnyreva AV. The commercially cultivated edible oyster mushrooms Pleurotus sajor-caju and P. pulmonarius are two separate species, similar in morphology but reproductively isolated. Russ J Genet. 2012;48(11):1080–1088.
  • Kozarski MS, Klaus AS, Vunduk JD, et al. Health impact of the commercially cultivated mushroom Agaricus bisporus and the wild-growing mushroom Ganoderma resinaceum–A comparative overview. J Serbian Chem Soc. 2020;85(6):721–735.
  • Guillamón E, Garc’ia-Lafuente A, Lozano M, et al. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia. 2010;81(7):715–723.
  • Sevindik M. Wild edible mushroom Cantharellus cibarius as a natural antioxidant food. Turkish J Agric Sci Technol. 2019;7:1377–1381.
  • de Souza RA, Kamat NM. Evaluation and characterization of pellet morphology of genus Termitomyces heim of a wild tropical edible mushroom. 2018.
  • Due EA, Michel KD, Digbeu YD. Physicochemical and functional properties of flour from the wild edible mushroom Termitomyces heimii Natarajan harvested in Côte d’Ivoire. Turkish J Agric Sci Technol. 2016;4(8):651–655.
  • Sarikurkcu C, Popović-Djordjević J, Solak MH. Wild edible mushrooms from Mediterranean region: metal concentrations and health risk assessment. Ecotoxicol Environ Saf. 2020;190:110058.
  • Sarker D, Redoy MRA, Sarker NC, et al. Effect of used rice straw of mushroom cultivation on growth performance and plasma metabolites in beef cattle. Bangladesh J Anim Sci. 2016;45(3):40–45.
  • Thatoi H, Singdevsachan SK. Diversity, nutritional composition and medicinal potential of Indian mushrooms: a review. African J Biotechnol. 2014;13(4):523-545.
  • Heleno SA, Ferreira RC, Antonio AL, et al. Nutritional value, bioactive compounds and antioxidant properties of three edible mushrooms from Poland. Food Biosci. 2015;11:48–55.
  • Ahmed M, Abdullah N, Ahmed KU, et al. Yield and nutritional composition of oyster mushroom strains newly introduced in Bangladesh. Pesqui Agropecuária Bras. 2013;48(2):197–202.
  • Manzi P, Marconi S, Aguzzi A, et al. Commercial mushrooms: nutritional quality and effect of cooking. Food Chem. 2004;84(2):201–206.
  • Miles PG, Chang S-T. Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC press, Boca Raton; 2004.
  • Kurtzman RH Jr. Mushrooms: sources for modern western medicine. Micol Apl Int. 2005;17:21–33.
  • Rathore H, Prasad S, Sharma S. Mushroom nutraceuticals for improved nutrition and better human health: a review. PharmaNutrition. 2017;5(2):35–46.
  • Zhang M, Cui SW, Cheung PCK, et al. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Technol. 2007;18(1):4–19.
  • Kalač P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J Sci Food Agric. 2013;93(2):209–218.
  • Giavasis I. Bioactive fungal polysaccharides as potential functional ingredients in food and nutraceuticals. Curr Opin Biotechnol. 2014;26:162–173.
  • Mizuno T. Bioactive biomolecules of mushrooms: food function and medicinal effect of mushroom fungi. Food Rev Int. 1995;11(1):5–21.
  • Xu X, Yan H, Chen J, et al. Bioactive proteins from mushrooms. Biotechnol Adv. 2011;29(6):667–674.
  • Reis FS, Barros L, Martins A, et al. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: an inter-species comparative study. Food Chem Toxicol. 2012;50(2):191–197.
  • Shah H, Khalil IA, Jabeen S. Nutritional composition and protein quality of Pleurotus mushroom. Sarhad J Agric. 1997;13(6):621-626.
  • Mohamed EM, Farghaly FA. Bioactive compounds of fresh and dried Pleurotus ostreatus mushroom. Int J Biotechnol Wellness Ind. 2014;3(1):4–14.
  • Díaz-Godínez G, Sánchez C. In situ digestibility and nutritive value of maize straw generated after Pleurotus ostreatus cultivation. Can J Anim Sci. 2002;82(4):617–619.
  • Öztürk M, Tel-Çayan G, Muhammad A, et al. Mushrooms: (eds) Atta-ur-Rahman, A source of exciting bioactive compounds. In: Studies in natural products chemistry, Elsevier, UK; 2015;45 p. 363–456.
  • Rai M, Tidke G, Wasser SP. Therapeutic potential of mushrooms. 2005.
  • Xu J-W, Zhong -J-J. Genetic engineering of Ganoderma lucidum for the efficient production of ganoderic acids. Bioengineered. 2015;6(6):357–360.
  • Friedman M. Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion’s Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. J Agric Food Chem. 2015;63(32):7108–7123.
  • Ramesh CH, Pattar MG. Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of Western Ghats of Karnataka, India. Pharmacognosy Res. 2010;2(2):107.
  • Golak-Siwulska I, Kałużewicz A, Spiżewski T, et al. Bioactive compounds and medicinal properties of Oyster mushrooms (Pleurotus sp.). Folia Hortic. 2018;30(2):191–201.
  • Zhou R, Liu ZK, Zhang YN, et al. Research progress of bioactive proteins from the edible and medicinal mushrooms. Curr Protein Pept Sci. 2019;20(3):196–219.
  • Kostić M, Smiljković M, Petrović J, et al. Chemical, nutritive composition and a wide range of bioactive properties of honey mushroom Armillaria mellea (Vahl: fr.) Kummer. Food Funct. 2017;8(9):3239–3249.
  • Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2015;15(1):1–22.
  • Yeh J-Y, Hsieh L-H, Wu K-T, et al. Antioxidant properties and antioxidant compounds of various extracts from the edible basidiomycete Grifola frondosa (Maitake). Molecules. 2011;16(4):3197–3211.
  • Wu T, Xu BB. Antidiabetic and antioxidant activities of eight medicinal mushroom species from China. Int J Med Mushrooms. 2015;17(2):129–140.
  • Fu H-Y, Shieh D-E, Ho C-T. Antioxidant and free radical scavenging activities of edible mushrooms. J Food Lipids. 2002;9(1):35–43.
  • Chiang -S-S, Ulziijargal E, Chien R-C, et al. Antioxidant and anti-inflammatory properties of solid-state fermented products from a medicinal mushroom, Taiwanofungus salmoneus (higher Basidiomycetes) from Taiwan. Int J Med Mushrooms. 2015;17(1):21–32.
  • Gargano ML, van Griensven LJLD, Isikhuemhen OS, et al. Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst Int J Deal with All Asp Plant Biol. 2017;151:548–565.
  • Chomcheon P, Wiyakrutta S, Sriubolmas N, et al. Aromatase inhibitory, radical scavenging, and antioxidant activities of depsidones and diaryl ethers from the endophytic fungus Corynespora cassiicola L36. Phytochemistry. 2009;70(3):407–413.
  • Smolskaitė L, Venskutonis PR, Talou T. Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Sci Technol. 2015;60(1):462–471.
  • Liu J, Jia L, Kan J, et al. In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol. 2013;51:310–316.
  • Lee I-K, Kim Y-S, Jang Y-W, et al. New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Bioorganic Med Chem Lett. 2007;17(24):6678–6681.
  • Ferreira ICFR, Baptista P, Vilas-Boas M, et al. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: individual cap and stipe activity. Food Chem. 2007;100(4):1511–1516.
  • Menaga D, Rajakumar S, Ayyasamy PM. Free radical scavenging activity of methanolic extract of Pleurotus Florida mushroom. Int J Pharm Pharm Sci. 2013;5:601–606.
  • Jayakumar T, Thomas PA, Geraldine P. In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innov Food Sci Emerg Technol. 2009;10(2):228–234.
  • Pal J, Ganguly S, Tahsin KS, et al., In vitro free radical scavenging activity of wild edible mushroom, Pleurotus squarrosulus (mont.) Singer. 2010.
  • Keleş A, Koca I, Gençcelep H. Antioxidant properties of wild edible mushrooms. J Food Process Technol. 2011;2:2–6.
  • Ba DM, Ssentongo P, Beelman RB, et al. Higher Mushroom consumption is associated with lower risk of cancer: a systematic review and meta-analysis of observational studies. Adv Nutr. 2021;12(5):1691–1704.
  • Kozarski M, Klaus A, Jakovljevic D, et al. Antioxidants of edible mushrooms. Molecules. 2015;20(10):19489–19525.
  • Garcia-Lafuentea A, Moro C, Villares A, et al. Mushrooms as a source of anti-inflammatory agents. Anti-Inflamm & Anti-Allergy Agents Med Chem (Formerly Curr Med Chem Anti-Allergy Agents). 2010;9(2):125–141.
  • Muszyńska B, Grzywacz-Kisielewska A, Kała K, et al. Anti-inflammatory properties of edible mushrooms: a review. Food Chem. 2018;243:373–381.
  • Ma L, Chen H, Dong P, et al. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem. 2013;139(1–4):503–508.
  • Qian G, Pan G-F, Guo J-Y. Anti-inflammatory and antinociceptive effects of cordymin, a peptide purified from the medicinal mushroom Cordyceps sinensis. Nat Prod Res. 2012;26(24):2358–2362.
  • Smiderle FR, Baggio CH, Borato DG, et al. Anti-inflammatory properties of the medicinal mushroom Cordyceps militaris might be related to its linear (1→ 3)-$β$-D-glucan. PLoS One. 2014;9(10):e110266.
  • Elsayed EA, El Enshasy H, Wadaan MAM, et al. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm. 2014; 1-15.
  • Mori K, Ouchi K, Hirasawa N. The anti-inflammatory effects of lion’s mane culinary-medicinal mushroom, hericium erinaceus (higher basidiomycetes) in a coculture system of 3t3-L1 adipocytes and raw264 macrophages. Int J Med Mushrooms. 2015;17(7):609–618.
  • Qin M, Geng Y, Lu Z, et al. Anti-inflammatory effects of ethanol extract of lion’s mane medicinal mushroom, Hericium erinaceus (agaricomycetes), in mice with ulcerative colitis. Int J Med Mushrooms. 2016;18(3):227–234.
  • Jiang X, Chu Q, Li L, et al. The anti-fatigue activities of Tuber melanosporum in a mouse model. Exp Ther Med. 2018;15(3):3066–3073.
  • Yu H, Han C, Sun Y, et al. The agaricoglyceride of royal sun medicinal mushroom, Agaricus brasiliensis (higher Basidiomycetes) is anti-inflammatory and reverses diabetic glycemia in the liver of mice. Int J Med Mushrooms. 2013;15(4):357–364.
  • Padilha MM, Avila AAL, Sousa PJC, et al. Anti-inflammatory activity of aqueous and alkaline extracts from Mushrooms (Agaricus blazei Murill). J Med Food. 2009;12(2):359–364.
  • Lakshmi B, Ajith TA, Sheena N, et al. Antiperoxidative, anti-inflammatory, and antimutagenic activities of ethanol extract of the mycelium of Ganoderma lucidum occurring in South India, Teratog. Carcinog Mutagen. 2003;23(S1):85–97.
  • Kalaras MD, Richie JP, Calcagnotto A, et al. Mushrooms: a rich source of the antioxidants ergothioneine and glutathione. Food Chem. 2017;233:429–433.
  • Liu M, Jing H, Zhang J, et al. Optimization of mycelia selenium polysaccharide extraction from Agrocybe cylindracea SL-02 and assessment of their antioxidant and anti-ageing activities. PLoS One. 2016;11(8):e0160799.
  • Ye M, Chen W, Qiu T, et al. Structural characterisation and anti-ageing activity of extracellular polysaccharide from a strain of Lachnum sp. Food Chem. 2012;132(1):338–343.
  • Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2012;2(1):1–15.
  • Lemieszek M, Rzeski W. Anticancer properties of polysaccharides isolated from fungi of the Basidiomycetes class. Contemp Oncol. 2012;16:285.
  • Konno S, Chu K, Feuer N, et al. Potent Anticancer Effects of Bioactive Mushroom Extracts (Phellinus linteus) on a Variety of Human Cancer Cells. J Clin Med Res. 2015;7(2):76.
  • Ajith TA, Janardhanan KK. Indian medicinal mushrooms as a source of antioxidant and antitumor agents. J Clin Biochem Nutr. 2007;40(3):157–162.
  • Kim J-H, Kim S-J, Park H-R, et al. The different antioxidant and anticancer activities depending on the color of oyster mushrooms. J Med Plants Res. 2009;3:1016–1020.
  • Friedman M. Mushroom polysaccharides: chemistry and antiobesity, antidiabetes, anticancer, and antibiotic properties in cells, rodents, and humans. Foods. 2016;5:80.
  • Park BT, Na KH, Jung EC, et al. Antifungal and anticancer activities of a protein from the mushroom Cordyceps militaris. Korean Physiol & Pharmacol Off J Korean Physiol Soc Korean Soc Pharmacol. 2009;13(1):49.
  • Liu K, Wang J, Zhao L, et al. Anticancer, antioxidant and antibiotic activities of mushroom Ramaria flava. Food Chem Toxicol. 2013;58:375–380.
  • Delmanto RD, de Lima PLA, Sugui MM, et al. Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Mutat Res Toxicol Environ Mutagen. 2001;496(1–2):15–21.
  • Ishii PL, Prado CK, de Oliveira Mauro M, et al. Evaluation of Agaricus blazei in vivo for antigenotoxic, anticarcinogenic, phagocytic and immunomodulatory activities. Regul Toxicol Pharmacol. 2011;59(3):412–422.
  • Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res. 2016;424:30–41.
  • Chen S, Oh S-R, Phung S, et al. Anti-Aromatase Activity of Phytochemicals in White Button Mushrooms (Agaricus bisporus). Cancer Res. 2006;66(24):12026–12034.
  • Li H, Zhang M, Ma G. Hypolipidemic effect of the polysaccharide from Pholiota nameko. Nutrition. 2010;26(5):556–562.
  • Kick L, Kirchner M, Schneider S. CRISPR-Cas9: from a bacterial immune system to genome-edited human cells in clinical trials. Bioengineered. 2017;8(3):280–286.
  • Alves MJ, Ferreira ICFR, Dias JF, et al. A review on antimicrobial activity of mushroom (Basidiomycetes) extracts and isolated compounds. Planta Med. 2012;78(16):1707–1718.
  • Alves MJ, Ferreira ICFR, Dias J, et al. A review on antifungal activity of mushroom (basidiomycetes) extracts and isolated compounds. 2013.
  • Ngai PHK, Zhao Z, Ng TB. Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides. 2005;26(2):191–196.
  • Wang H, Ng TB. Eryngin, a novel antifungal peptide from fruiting bodies of the edible mushroom Pleurotus eryngii. Peptides. 2004;25(1):1–5.
  • Wang H, Ng TB. Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides. 2006;27(1):27–30.
  • Bender S, Dumitrache-Anghel CN, Backhaus J, et al. A case for caution in assessing the antibiotic activity of extracts of culinary-medicinal Shiitake mushroom [Lentinus edodes (Berk.) singer](agaricomycetideae). Int J Med Mushrooms. 2003;5(1):6.
  • Gao Y, Tang W, Gao H, et al. antimicrobial activity of the medicinal mushroom ganoderma. Food Rev Int. 2005;21(2):211–229.
  • Yamaç M, Bilgili F. Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm Biol. 2006;44(9):660–667.
  • Kalyoncu F, Oskay M, Sağlam H, et al. Antimicrobial and antioxidant activities of mycelia of 10 wild mushroom species. J Med Food. 2010;13(2):415–419.
  • Balakumar R, Sivaprakasam E, Kavitha D, et al. Antibacterial and antifungal activity of fruit bodies of Phellinus mushroom extract. Int J Biosci. 2011;1:72–77.
  • Alves MJ, Ferreira ICFR, Martins A, et al. Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics. J Appl Microbiol. 2012;113(2):466–475.
  • Alves MJ, Ferreira ICFR, Lourenço I, et al. Wild mushroom extracts potentiate the action of standard antibiotics against multiresistant bacteria. J Appl Microbiol. 2014;116(1):32–38.
  • Guo FC, Williams BA, Kwakkel RP, et al. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on the cecal microbial ecosystem in broiler chickens. Poult Sci. 2004;83(2):175–182.
  • Guo FC, Kwakkel RP, Williams BA, et al. Effects of mushroom and herb polysaccharides, as alternatives for an antibiotic, on growth performance of broilers. Br Poult Sci. 2004;45(5):684–694.
  • Kavyani A, Shahne AZ, PorReza J, et al. Evaluation of dried powder of mushroom (Agaricus bisporus) as an antibiotic growth promoter substitution on performance, carcass traits and humoral immune responses in broiler chickens. J Med Plants Res. 2012;6(1):94–100.
  • Wong K-H, Lai CKM, Cheung PCK. Immunomodulatory activities of mushroom sclerotial polysaccharides. Food Hydrocoll. 2011;25(2):150–158.
  • Martel J, Ko Y-F, Ojcius DM, et al. Immunomodulatory properties of plants and mushrooms. Trends Pharmacol Sci. 2017;38(11):967–981.
  • Kim Y-R. immunomodulatory activity of the water extract from medicinal Mushroom Inonotus obliquus. Mycobiology. 2005;33(3):158–162.
  • Wu S-J, Lu T-M, Lai M-N, et al. Immunomodulatory activities of medicinal mushroom grifola frondosa extract and its bioactive constituent. Am J Chin Med. 2013;41(1):131–144.
  • Shi Y, Sun J, He H, et al. Hepatoprotective effects of Ganoderma lucidum peptides against D-galactosamine-induced liver injury in mice. J Ethnopharmacol. 2008;117(3):415–419.
  • Yue P-K, Wong -Y-Y, Wong -K-K, et al. Current evidence for the hepatoprotective activities of the medicinal mushroom Antrodia cinnamomea. Chin Med. 2013;8(1):1–7.
  • Nitha B, Fijesh PV, Janardhanan KK. Hepatoprotective activity of cultured mycelium of Morel mushroom. Morchella Esculenta, Exp Toxicol Pathol. 2013;65(1–2):105–112.
  • Acharya K, Chatterjee S, Biswas G, et al. Hepatoprotective effect of a wild edible mushroom on carbon tetrachloride-induced hepatotoxicity in mice. Int J Pharm Pharm Sci. 2012;4:285–288.
  • Wang L, Xu N, Zhang J, et al. Antihyperlipidemic and hepatoprotective activities of residue polysaccharide from Cordyceps militaris SU-12. Carbohydr Polym. 2015;131:355–362.
  • Salinaro AT, Pennisi M, Di Paola R, et al. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun Ageing. 2018;15:1–8.
  • Phan C-W, David P, Sabaratnam V. Edible and medicinal mushrooms: emerging brain food for the mitigation of neurodegenerative diseases. J Med Food. 2017;20(1):1–10.
  • Wong K-H, Ng -C-C, Kanagasabapathy G, et al. An overview of culinary and medicinal mushrooms in neurodegeneration and neurotrauma research. Int J Med Mushrooms. 2017;19(3):191–202.
  • Phan C-W, David P, Naidu M, et al. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol. 2015;35(3):355–368.
  • Lee W, Fujihashi A, Govindarajulu M, et al. Role of mushrooms in Neurodegenerative diseases. Med Mushrooms. 2019; 1: 223–249.
  • He X, Wang X, Fang J, et al. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion’s Mane) mushroom: a review. Int J Biol Macromol. 2017;97:228–237.
  • Ma H-T, Hsieh J-F, Chen S-T. Anti-diabetic effects of Ganoderma lucidum. Phytochemistry. 2015;114:109–113.
  • Sirisidthi K, Kosai P, Jiraungkoorskul W. Antidiabetic activity of the lingzhi or reishi medicinal mushroom Ganoderma lucidum. SA Pharm J. 2016;83:45–47.
  • Jeong SC, Jeong YT, Yang BK, et al. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res. 2010;30(1):49–56.
  • Ganeshpurkar A, Kohli S, Rai G. Antidiabetic potential of polysaccharides from the white oyster culinary-medicinal mushroom Pleurotus Florida (higher Basidiomycetes). Int J Med Mushrooms. 2014;16(3):207–217.
  • Nyam KL, Chow CF, Tan CS, et al. Antidiabetic properties of the tiger’s milk medicinal mushroom, Lignosus rhinocerotis (agaricomycetes), in streptozotocin-induced diabetic rats. Int J Med Mushrooms. 2017;19(7):607–617.
  • Stojkovic D, Smiljkovic M, Ciric A, et al. An insight into antidiabetic properties of six medicinal and edible mushrooms: inhibition of $α$-amylase and $α$-glucosidase linked to type-2 diabetes. South African J Bot. 2019;120:100–103.
  • Ng TB, Ng CCW. Antihyperlipidemic effects of mushroom extracts and compounds. Cultiv Antioxid Prop Heal BENEFITS. 2014; 1:189-197.
  • Alam N, Yoon KN, Lee TS. Antihyperlipidemic activities of Pleurotus ferulae on biochemical and histological function in hypercholesterolemic rats. J Res Med Sci Off J Isfahan Univ Med Sci. 2011;16:776.
  • Hu SH, Liang ZC, Chia YC, et al. Antihyperlipidemic and Antioxidant Effects of Extracts from Pleurotus citrinopileatus. J Agric Food Chem. 2006;54(6):2103–2110.
  • Yoon KN, Alam N, Lee JS, et al. Antihyperlipidemic effect of dietary lentinus edodes on plasma, feces and hepatic tissues in hypercholesterolemic rats. Mycobiology. 2011;39(2):96–102.
  • Abrams DI, Couey P, Shade SB, et al. Antihyperlipidemic effects of Pleurotus ostreatus (oyster mushrooms) in HIV-infected individuals taking antiretroviral therapy. BMC Complement Altern Med. 2011;11(1):1–8.
  • Shibu MA, Agrawal DC, Huang C-Y. Mushrooms: a pandora box of cardioprotective phytochemicals. In: Agrawal D., Tsay HS., Shyur LF., Wu YC., Wang SY. (eds) Medicinal plants fungi recent advances research and development. Springer, Singapore; 2017. p. 337–362.
  • Ching L, Abdullah N, Shuib AS, et al., Characterization of antihypertensive peptides from Pleurotus cystidiosus OK Miller (abalone mushroom). in: Eds Savoie JM, Foulongne-Oriol M, Largeteau M, et al).Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7); Arcachon, France; 2011. pp. 319–328.
  • Lau -C-C, Abdullah N, Shuib AS, et al. Proteomic analysis of antihypertensive proteins in edible mushrooms. J Agric Food Chem. 2012;60(50):12341–12348.
  • Lasukova TV, Maslov LN, Arbuzov AG, et al. Cardioprotective activity of Ganoderma lucidum extract during total ischemia and reperfusion of isolated heart. Bull Exp Biol Med. 2015;158(6):739–741.
  • Rajasekaran M, Kalaimagal C. Cardioprotective effect of a medicinal mushroom, Ganoderma lucidum against Adriamycin induced toxicity. Int J Pharmacol. 2012;8(4):252–258.
  • Miyazawa N, Okazaki M, Ohga S. Antihypertensive effect of Pleurotus nebrodensis in spontaneously hypertensive rats. J Oleo Sci. 2008;57(12):675–681.
  • Biswas G, Rana S, Sarkar S, et al. Cardioprotective activity of ethanolic extract of Astraeus hygrometricus (Pers.) Morg. Pharmacologyonline. 2011;2:808–817.
  • Nworu CS, Ihim SA, Ugwu LE, et al. Hepato-and nephroprotective activities of a Nigerian local king tuber oyster mushroom, Pleurotus tuberregium (higher Basidiomycetes), in chemically induced organ toxicities in rats. Int J Med Mushrooms. 2014;16(4):305–318.
  • Sasikumar V, Menon SG. Antioxidant activity and nephroprotective effects of aqueous extract of Pleurotus eous (Berk.) Sacc. (APK1) pink edible oyster mushroom. Int J Pharm Biol Sci. 2011;2:B92–103.
  • Luo Q, Wang X-L, Di L, et al. Isolation and identification of renoprotective substances from the mushroom Ganoderma lucidum. Tetrahedron. 2015;71:840–845.
  • Wang X-L, Wu Z-H, Di L, et al. Renoprotective phenolic meroterpenoids from the mushroom Ganoderma cochlear. Phytochemistry. 2019;162:199–206.
  • Lee SR, Lee D, Lee H-J, et al. Renoprotective chemical constituents from an edible mushroom, Pleurotus cornucopiae in cisplatin-induced nephrotoxicity. Bioorg Chem. 2017;71:67–73.
  • Schulman A, Chaimowitz M, Choudhury M, et al. Antioxidant and renoprotective effects of mushroom extract: implication in prevention of nephrolithiasis. J Clin Med Res. 2016;8(12):908.
  • Song X, Ren Z, Wang X, et al. Antioxidant, anti-inflammatory and renoprotective effects of acidic-hydrolytic polysaccharides by spent mushroom compost (Lentinula edodes) on LPS-induced kidney injury. Int J Biol Macromol. 2020;151:1267–1276.
  • Deepalakshmi K, Mirunalini S. Therapeutic properties and current medical usage of medicinal mushroom: ganoderma lucidum. Int J Pharm Sci Res. 2011;2:1922.
  • Igbiri S, Udowelle NA, Ekhator OC, et al. Edible mushrooms from Niger Delta, Nigeria with heavy metal levels of public health concern: a human health risk assessment. Recent Patents Food, Nutr & Agric. 2018;9(1):31–41.
  • Karami H, Shariatifar N, Nazmara S, et al. The concentration and probabilistic health risk of potentially toxic elements (PTEs) in edible mushrooms (wild and cultivated) samples collected from different cities of Iran. Biol Trace Elem Res. 2021;199(1):389–400.
  • De A, Mridha D, Bandopadhyay B, et al. Arsenic and its effect on nutritional properties of oyster mushrooms with reference to health risk assessment. Biol Trace Elem Res. 2021;199(3):1170–1178.
  • Mleczek M, Siwulski M, Budka A, et al. Toxicological risks and nutritional value of wild edible mushroom species-a half-century monitoring study. Chemosphere. 2021;263:128095.
  • Adams LS, Chen S, Phung S, et al. White button mushroom (Agaricus Bisporus) exhibits antiproliferative and proapoptotic properties and inhibits prostate tumor growth in Athymic Mice. Nutr Cancer. 2008;60(6):744–756.
  • Bhushan A, Kulshreshtha M. The medicinal mushroom Agaricus bisporus: review of phytopharmacology and potential role in the treatment of various diseases. J Nat Sci Med. 2018;1:4.
  • Rezaeian S, Pourianfar HR. Antimicrobial properties of the button mushroom, Agaricus bisporus: a mini-review. Int J Adv Res. 2016;4:129–426.
  • Firenzuoli F, Gori L, Lombardo G. The medicinal mushroom Agaricus blazei Murrill: review of literature and pharmaco-Toxicological problems. Evidence-Based Complement Altern Med. 2008;5(1):3–15.
  • Liu Q, Zhu M, Geng X, et al. Characterization of polysaccharides with antioxidant and hepatoprotective activities from the edible mushroom Oudemansiella radicata. Molecules. 2017;22(2):234.
  • Homer JA, Sperry J. Mushroom-derived indole alkaloids. J Nat Prod. 2017;80(7):2178–2187.
  • Kadnikova IA, Costa R, Kalenik TK, et al. Chemical composition and nutritional value of the mushroom Auricularia auricula-judae. J Food Nutr Res. 2015;3:478–482.
  • Ma Z, Wang J, Zhang L, et al. Evaluation of water soluble $β$-D-glucan from Auricularia auricular-judae as potential anti-tumor agent. Carbohydr Polym. 2010;80(3):977–983.
  • Zhang Y, Zeng Y, Men Y, et al. Structural characterization and immunomodulatory activity of exopolysaccharides from submerged culture of Auricularia auricula-judae. Int J Biol Macromol. 2018;115:978–984.
  • Song G, Du Q. Structure characterization and antitumor activity of an $α$ $β$-glucan polysaccharide from Auricularia polytricha. Food Res Int. 2012;45(1):381–387.
  • Zhao S, Rong C, Liu Y, et al. Extraction of a soluble polysaccharide from Auricularia polytricha and evaluation of its anti-hypercholesterolemic effect in rats. Carbohydr Polym. 2015;122:39–45.
  • Bovi M, Cenci L, Perduca M, et al. BEL $β$-trefoil: a novel lectin with antineoplastic properties in king bolete (Boletus edulis) mushrooms. Glycobiology. 2013;23(5):578–592.
  • Sarikurkcu C, Tepe B, Yamac M. Evaluation of the antioxidant activity of four edible mushrooms from the central Anatolia, Eskisehir–Turkey: lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron. Bioresour Technol. 2008;99(14):6651–6655.
  • Goulart Baseia I, de Diego Calonge F. Calvatia sculpta, a striking puffball occurring on Brazilian sand dunes. 2008.
  • Nowak R, Nowacka-Jechalke N, Juda M, et al. The preliminary study of prebiotic potential of polish wild mushroom polysaccharides: the stimulation effect on Lactobacillus strains growth. Eur J Nutr. 2018;57(4):1511–1521.
  • Thatoi H, Singdevsachan SK, Patra JK. Prebiotics and their production from unconventional raw materials (mushrooms). In: (eds) Alexandru Mihai Grumezescu and Alina Maria Holban, Therapeutic, probiotic, and unconventional Foods. 2018. p. 79–99.
  • Badshah H, Ullah F, Khan MU, et al. Pharmacological activities of selected wild mushrooms in South Waziristan (FATA)Pakistan. South African J Bot. 2015;97:107–110.
  • Kivrak I, Kivrak S, Harmandar M. Bioactive compounds, chemical composition, and medicinal value of the giant puffball, Calvatia gigantea (higher basidiomycetes), from Turkey. Int J Med Mushrooms. 2016;18(2):97–107.
  • Khalili M, Ebrahimzadeh MA, Kosaryan M, et al. Iron chelation and liver disease healing activity of edible mushroom (Cantharellus cibarius), in vitro and in vivo assays. RSC Adv. 2015;5(7):4804–4810.
  • Lemieszek MK, Nunes FM, Cardoso C, et al. Neuroprotective properties of Cantharellus cibarius polysaccharide fractions in different in vitro models of neurodegeneration. Carbohydr Polym. 2018;197:598–607.
  • Hou Z. Antibacterial activities of secondary metabolites from Clitocybe nuda. 2013.
  • Shih -C-C, Chen M-H, Lin C-H. Validation of the antidiabetic and hypolipidemic effects of Clitocybe nuda by assessment of glucose transporter 4 and gluconeogenesis and AMPK phosphorylation in streptozotocin-induced mice, evidence-based complement. Altern Med. 2014;2014:1-14.
  • Das SK, Masuda M, Sakurai A, et al. Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia. 2010;81(8):961–968.
  • Wang M, Meng XY, Le Yang R, et al. Cordyceps militaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice. Carbohydr Polym. 2012;89(2):461–466.
  • Ridwan AY, Wu J, Choi J-H, et al. Bioactive compounds from the edible mushroom Cortinarius caperatus. Mycoscience. 2018;59(2):172–175.
  • Zacchigna M, Altieri T, Beltrame G, et al. Mycochemical study of polysaccharides from the edible mushroom Cortinarius caperatus (Gypsy mushroom). in: The 9th international medicinal mushrooms conference, Palermo, Italy; 2017. p. 194.
  • Guo M-Z, Meng M, Feng -C-C, et al. A novel polysaccharide obtained from Craterellus cornucopioides enhances immunomodulatory activity in immunosuppressive mice models via regulation of the TLR4-NF-κB pathway. Food Funct. 2019;10(8):4792–4801.
  • Pérez-Moreno J, Martínez-Reyes M. Edible ectomycorrhizal mushrooms: biofactories for sustainable development. In: (eds) Amon Guevara-GonzalezIrineo Torres-Pacheco, Biosystems engineering: biofactories for food production in the century XXI. Springer Nature, Switzerland AG; 2014. p. 151–233.
  • Rodríguez-Seoane P, González-Muñoz MJ, Falqué E, et al. Pressurized hot water extraction of β-glucans from Cantharellus tubaeformis. Electrophoresis. 2018;39(15):1892–1898.
  • Sánchez C. Bioactives from mushroom and their application. In: (eds) Munish Puri, Food bioactives. Springer Nature Switzerland AG; 2017. p. 23–57.
  • Pang X, Yao W, Yang X, et al. Purification, characterization and biological activity on hepatocytes of a polysaccharide from Flammulina velutipes mycelium. Carbohydr Polym. 2007;70(3):291–297.
  • Wu M, Luo X, Xu X, et al. Antioxidant and immunomodulatory activities of a polysaccharide from Flammulina velutipes. J Tradit Chin Med. 2014;34(6):733–740.
  • Ai-Lati A, Liu S, Ji Z, et al. Structure and bioactivities of a polysaccharide isolated from Ganoderma lucidum in submerged fermentation. Bioengineered. 2017;8(5):565–571.
  • Chai L, Zhang G, Hou H. Antimicrobial effect of polyphenols from Grifola frondosa. China Brew. 2012;36:91.
  • Tel G, Ozturk M, Duru ME, et al. Antioxidant and anticholinesterase activities of five wild mushroom species with total bioactive contents. Pharm Biol. 2015;53(6):824–830.
  • Venturini ME, Rivera CS, Gonzalez C, et al. Antimicrobial activity of extracts of edible wild and cultivated mushrooms against foodborne bacterial strains. J Food Prot. 2008;71(8):1701–1706.
  • Kim SP, Nam SH, Friedman M. Hericium erinaceus (Lion’s Mane) mushroom extracts inhibit metastasis of cancer cells to the lung in CT-26 colon cancer-tansplanted mice. J Agric Food Chem. 2013;61(20):4898–4904.
  • Vishwakarma MP, Bhatt RP, Gairola S. Some medicinal mushrooms of Garhwal Himalaya, Uttarakhand,India. Int J Med Arom Plants. 2011;1:33–40.
  • Vargas F, Rivas C, Zoltan T, et al. Antioxidant and scavenging activity of skyrin on free radical and some reactive oxygen species. Av En Quimica. 2008;3:7–14.
  • Wang S, Marcone MF. The biochemistry and biological properties of the world’s most expensive underground edible mushroom: truffles. Food Res Int. 2011;44(9):2567–2581.
  • Chien R-C, Yang Y-C, Lai EI, et al. Anti-inflammatory effects of extracts from the medicinal mushrooms Hypsizygus marmoreus and Pleurotus eryngii (agaricomycetes). Int J Med Mushrooms. 2016;18(6):477–487.
  • Shah SR, Ukaegbu CI, Hamid HA, et al. Evaluation of antioxidant and antibacterial activities of the stems of Flammulina velutipes and Hypsizygus tessellatus (white and brown var.) extracted with different solvents. J Food Meas Charact. 2018;12(3):1947–1961.
  • Finimundy TC, Gambato G, Fontana R, et al. Aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exhibit high antioxidant capability and promising in vitro antitumor activity. Nutr Res. 2013;33(1):76–84.
  • Hearst R, Nelson D, McCollum G, et al. An examination of antibacterial and antifungal properties of constituents of Shiitake (Lentinula edodes) and Oyster (Pleurotus ostreatus) mushrooms. Complement Ther Clin Pract. 2009;15(1):5–7.
  • Kosanić M, Ranković B, Rančić A, et al. Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. J Food Drug Anal. 2016;24(3):477–484.
  • Cheng X-D, Wu Q-X, Zhao J, et al. Immunomodulatory effect of a polysaccharide fraction on RAW 264.7 macrophages extracted from the wild Lactarius deliciosus. Int J Biol Macromol. 2019;128:732–739.
  • Liu C, Sun Y, Mao Q, et al. Characteristics and antitumor activity of Morchella esculenta polysaccharide extracted by pulsed electric field. Int J Mol Sci. 2016;17(6):986.
  • Hu T, Lin Q, Guo T, et al. Polysaccharide isolated from Phellinus linteus mycelia exerts anti-inflammatory effects via MAPK and PPAR signaling pathways. Carbohydr Polym. 2018;200:487–497.
  • Vicente F, Reyes F, Genilloud O. Fungal secondary metabolites as source of antifungal compounds. Fungi Appl Manag Strateg. 2016;1: 80–116.
  • Ajith TA, Janardhanan KK. Antioxidant and antihepatotoxic activities of Phellinus rimosus (Berk) Pilat. J Ethnopharmacol. 2002;81(3):387–391.
  • Ng TB, Ng CCW. Protective effects of mushrooms against tissue damage with emphasis on neuroprotective, hepatoprotective and radioprotective activities. Mushrooms Cultiv Antioxid Prop Heal Benefits. 2014; 1: 157–174.
  • Corrêa RCG, Brugnari T, Bracht A, et al. Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: a review on the past decade findings. Trends Food Sci Technol. 2016;50:103–117.
  • Harms M, Lindequist U, Al-Resly Z, et al. Influence of the mushroom Piptoporus betulinus on human keratinocytes. Planta Med. 2013;79(13): PC4.
  • Teplyakova TV, Psurtseva NV, Kosogova TA, et al. Antiviral activity of polyporoid mushrooms (higher Basidiomycetes) from Altai Mountains (Russia). Int J Med Mushrooms. 2012;14(1):37–45.
  • El Enshasy H, Maftoun P, Abd Malek R. Pleuran: immunomodulator polysaccharide from Pleurotus ostreatus, structure, production and application, mushrooms types. Prop Nutr. 2012;1: 153–172.
  • Zhang Y, Hu T, Zhou H, et al. Antidiabetic effect of polysaccharides from Pleurotus ostreatus in streptozotocin-induced diabetic rats. Int J Biol Macromol. 2016;83:126–132.
  • Amabye TG. Antioxidant and anti-inflammatory properties of cultivated mushrooms grown in mekelle city Tigray Ethiopia. Int J Nutr Food Sci. 2015;4:578.
  • Zhao S, Zhao Y, Li S, et al. A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica. Glycoconj J. 2010;27(2):259–265.
  • Teoh YP, Don MM, Ujang S. Nutrient improvement using statistical optimization for growth of Schizophyllum commune, and its antifungal activity against wood degrading fungi of rubberwood. Biotechnol Prog. 2012;28(1):232–241.
  • Hobbs C. The chemistry, nutritional value, immunopharmacology, and safety of the traditional food of medicinal split-gill fugus Schizophyllum commune Fr.: Fr. (Schizophyllaceae). A literature review. Int J Med Mushrooms. 2005;7(1–2):127–140.
  • Kimura T. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. Biomed Res Int. 2013;Special issue: 1-8.
  • Zhai X, Zhao A, Geng L, et al. Fermentation characteristics and hypoglycemic activity of an exopolysaccharide produced by submerged culture of Stropharia rugosoannulata\# 2. Ann Microbiol. 2013;63(3):1013–1020.
  • Govindaraj R, Paulraj MG, Toppo E, et al. Hepatoprotective effect of tricholoma giganteum (agaricomycetes) in a nonalcoholic fatty liver disease rat model. Int J Med Mushrooms. 2016;18(8):661–669.
  • Pushpa H, Anand M, Kasimaiah P, et al. Antioxidant and anticancer activity of Tricholoma giganteum Massee an edible wild mushroom. Acad J Can Res. 2014;7:146–151.
  • Li J, Ding X, Hou W, et al. Anti-microorganism, anti-tumor, and immune activities of a novel polysaccharide isolated from Tricholoma matsutake. Pharmacogn Mag. 2013;9(35):244.
  • Yin X, You Q, Jiang Z. Immunomodulatory activities of different solvent extracts from Tricholoma matsutake (S. Ito et S. Imai) singer (higher basidiomycetes) on normal mice. Int J Med Mushrooms. 2012;14(6):549–556.
  • Li H, Lee H-S, Kim S-H, et al. Antioxidant and anti-inflammatory activities of Methanol extracts of Tremella fuciformis and its major Phenolic Acids. J Food Sci. 2014;79(4):C460–C468.
  • Liu J, Meng C, Yan Y, et al. Structure, physical property and antioxidant activity of catechin grafted Tremella fuciformis polysaccharide. Int J Biol Macromol. 2016;82:719–724.
  • Patel S, Rauf A, Khan H, et al. Potential health benefits of natural products derived from truffles: a review. Trends Food Sci Technol. 2017;70:1–8.
  • Üstün N, Bulam S, Peksen A. Biochemical properties, biological activities and usage of truffles. in: Proceedings of the Conference: International Congress on Engineering and Life Science; Kastamonu, Turkey: 2018. pp. 26–29.
  • Savini S, Loizzo MR, Tundis R, et al. Fresh refrigerated tuber melanosporum truffle: effect of the storage conditions on the antioxidant profile, antioxidant activity and volatile profile. Eur Food Res Technol. 2017;243(12):2255–2263.
  • Mathew J, Sudheesh NP, Rony KA, et al. Antioxidant and antitumor activities of cultured mycelium of culinary-medicinal paddy straw mushroom Volvariella volvacea (Bull.: fr.) singer (agaricomycetideae). Int J Med Mushrooms. 2008;10(2):139–147.
  • Roy A, Prasad P, Gupta N. Volvariella volvacea: a macrofungus having nutritional and health potential. Asian J Pharm Tech. 2014;4:110–113.
  • Jiang Z, Jin M, Zhou W, et al. Anti-inflammatory activity of chemical constituents isolated from the willow bracket medicinal mushroom Phellinus igniarius (agaricomycetes). Int J Med Mushrooms. 2018;20(2):119–128.
  • Stránský K, Semerdžieva M, Otmar M, et al. Antifungal antibiotic from the mushroom Agrocybe aegerita (BRIG.) SING. Collect Czechoslov Chem Commun. 1992;57(3):590–603.
  • Mizuno T, Zhuang C, Abe K, et al. Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus (Pers.: Fr.) Pil. (Aphyllophoromycetideae). Int J Med Mushrooms. 1999;1(4):301–316.
  • Sarker MMR. Antihyperglycemic, insulin-sensitivity and anti-hyperlipidemic potential of Ganoderma lucidum, a dietary mushroom, on alloxan-and glucocorticoid-induced diabetic long-evans rats. Funct Foods Heal Dis. 2015;5:450–466.
  • Zhang S, He B, Ge J, et al. Characterization of chemical composition of Agaricus brasiliensis polysaccharides and its effect on myocardial SOD activity, MDA and caspase-3 level in ischemia–reperfusion rats. Int J Biol Macromol. 2010;46(3):363–366.
  • Yan X-F, Zhang Z-M, Yao H-Y, et al. Cardiovascular protection and antioxidant activity of the extracts from the mycelia of Cordyceps sinensis act partially via adenosine receptors. Phyther Res. 2013;27(11):1597–1604.
  • Soares AA, Sá-Nakanishi D, Babeto A, et al. Hepatoprotective effects of mushrooms. Molecules. 2013;18(7):7609–7630.
  • Dkhil MA, Diab MSM, Lokman MS, et al. Nephroprotective effect of Pleurotus ostreatus extract against cadmium chloride toxicity in rats. An Acad Bras Cienc. 2020;92(1). DOI:10.1590/0001-3765202020191121