1,190
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

MicroRNA-506 has a suppressive effect on the tumorigenesis of nonsmall-cell lung cancer by regulating tubby-like protein 3

, ORCID Icon, , , , , & show all
Pages 10176-10186 | Received 23 Aug 2021, Accepted 28 Oct 2021, Published online: 07 Dec 2021

References

  • Didkowska J, Wojciechowska U, Mańczuk M, et al. Lung cancer epidemiology: contemporary and future challenges worldwide. Ann Transl Med. 2016;4(8):150–160.
  • Florczuk M, Szpechcinski A, Chorostowska-Wynimko J. miRNAs as biomarkers and therapeutic targets in non-small cell lung cancer: current perspectives. Target Oncol. 2017;12(2):179–200.
  • Nadal E, Truini A, Nakata A, et al. A novel serum 4-microRNA signature for lung cancer detection. Sci Rep. 2015;5:12464–12472.
  • Qianqian Tang SW, Qiao X, Wang F, et al. MiR-29 promotes ovarian carcinoma cell proliferation through the PTEN pathway. Eur J Gynaecological Oncol. 2020;41(5):774–778.
  • Lu TX, Rothenberg. ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–1207.
  • Ali Syeda Z, Langden SSS, Munkhzul C, et al. Regulatory mechanism of MicroRNA expression in cancer. Int J Mol Sci. 2020;21(5):1723–1740.
  • Lan J, Huang Z, Han J, et al. Redox regulation of microRNAs in cancer. Cancer Lett. 2018;418:250–259.
  • Chaniad P, Trakunran K, Geater SL, et al. Serum miRNAs associated with tumor-promoting cytokines in non-small cell lung cancer. PLoS One. 2020;15(10):e0241593–608.
  • Sun D, Wu Y, Zhang S, et al. Distinct roles of miR-34 family members on suppression of lung squamous cell carcinoma. Biomed Pharmacother. 2021;142:111967–111976.
  • Naghizadeh S, Mohammadi A, Duijf PHG, et al. The role of miR-34 in cancer drug resistance. J Cell Physiol. 2020;235(10):6424–6440.
  • Zhu L, Xue F, Cui Y, et al. miR-155-5p and miR-760 mediate radiation therapy suppressed malignancy of non-small cell lung cancer cells. Biofactors. 2019;45(3):393–400.
  • Hossian A, Sajib MS, Tullar PE, et al. Multipronged activity of combinatorial miR-143 and miR-506 inhibits lung cancer cell cycle progression and angiogenesis in vitro. Sci Rep. 2018;8(1):10495–10508.
  • Legué E, Liem KF Jr. Tulp3 is a ciliary trafficking gene that regulates polycystic kidney disease. Curr Biol. 2019;29(5):803–812.e5.
  • Cameron DA, Pennimpede T, Petkovich M. Tulp3 is a critical repressor of mouse hedgehog signaling. Dev Dyn. 2009;238(5):1140–1149.
  • Sartor IT, Zeidán-Chuliá F, Albanus RD, et al. Computational analyses reveal a prognostic impact of TULP3 as a transcriptional master regulator in pancreatic ductal adenocarcinoma. Mol Biosyst. 2014;10(6):1461–1468.
  • Sartor ITS, Recamonde-Mendoza M, Ashton-Prolla P. TULP3: a potential biomarker in colorectal cancer? PLoS One. 2019;14(1):e0210762–71.
  • Cai B, Yang B, Huang D, et al. STAT3-induced up-regulation of lncRNA NEAT1 as a ceRNA facilitates abdominal aortic aneurysm formation by elevating TULP3. Biosci Rep. 2020;40(1):BSR20193299–309.
  • Pan J, Fang S, Tian H, et al. lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol Cancer. 2020;19(1):9–25.
  • Yan S, Zhou N, Zhang D, et al. PFKFB3 inhibition attenuates oxaliplatin-induced autophagy and enhances its cytotoxicity in colon cancer cells. Int J Mol Sci. 2019;20(21):5415–5429.
  • Sai C, Qin W, Meng J, et al. Macleayins A from macleaya promotes cell apoptosis through Wnt/β-Catenin signaling pathway and inhibits proliferation, migration, and invasion in cervical cancer HeLa cells. Front Pharmacol. 2021;12:668348–668358.
  • Song R, Liu Z, Lu L, et al. Long noncoding RNA SCAMP1 targets miR-137/CXCL12 axis to boost cell invasion and angiogenesis in ovarian cancer. DNA Cell Biol. 2020;39(6):1041–1050.
  • Xin H, Cao Y, Shao ML, et al. Chemokine CXCL3 mediates prostate cancer cells proliferation, migration and gene expression changes in an autocrine/paracrine fashion. Int Urol Nephrol. 2018;50(5):861–868.
  • Li J, Chen L, Xiong Y, et al. Knockdown of PD-L1 in human gastric cancer cells inhibits tumor progression and improves the cytotoxic sensitivity to CIK therapy. Cell Physiol Biochem. 2017;41(3):907–920.
  • Cai C, Zhi Y, Wang K, et al. CircHIPK3 overexpression accelerates the proliferation and invasion of prostate cancer cells through regulating miRNA-338-3p. Oncol Targets Ther. 2019;12:3363–3372.
  • Wang X, Lan Z, He J, et al. LncRNA SNHG6 promotes chemoresistance through ULK1-induced autophagy by sponging miR-26a-5p in colorectal cancer cells. Cancer Cell Int. 2019;19:234–245.
  • Yu Z, Zhang Y, Gao N, et al. Overexpression of miR-506 inhibits growth of osteosarcoma through Snail2. Am J Transl Res. 2015;7(12):2716–2723.
  • Deng Q, Xie L, Li. H. MiR-506 suppresses cell proliferation and tumor growth by targeting Rho-associated protein kinase 1 in hepatocellular carcinoma. Biochem Biophys Res Commun. 2015;467(4):921–927.
  • Pek M, Yatim S, Chen Y, et al. Oncogenic KRAS-associated gene signature defines co-targeting of CDK4/6 and MEK as a viable therapeutic strategy in colorectal cancer. Oncogene. 2017;36(35):4975–4986.
  • Rubio C, Martínez-Fernández M, Segovia C, et al. CDK4/6 inhibitor as a novel therapeutic approach for advanced bladder cancer independently of RB1 status. Clin Cancer Res. 2019;25(1):390–402.
  • Yang FQ, Zhang HM, Chen SJ, et al. Correction: miR-506 is down-regulated in clear cell renal cell carcinoma and inhibits cell growth and metastasis via targeting FLOT1. PLoS One. 2015;10(5):e0129404.
  • Hong JJ, Kim KE, Park SY, et al. Differential roles of tubby family proteins in ciliary formation and trafficking. Mol Cells. 2021;44(8):591–601.
  • Han S, Miyoshi K, Shikada S, et al. TULP3 is required for localization of membrane-associated proteins ARL13B and INPP5E to primary cilia. Biochem Biophys Res Commun. 2019;509(1):227–234.