2,982
Views
7
CrossRef citations to date
0
Altmetric
Review

Non-coding RNAs and their bioengineering applications for neurological diseases

, , & ORCID Icon
Pages 11675-11698 | Received 13 Oct 2021, Accepted 03 Nov 2021, Published online: 23 Dec 2021

References

  • Statello L, Guo C-J, Chen -L-L, et al. Gene regulation by long non-coding RNAs and its biological functions. Nature Reviews. Molecular Cell Biology. 2021 Feb;22(2):96–118. DOI:10.1038/s41580-020-00315-9
  • Cech TR, Steitz JA. The noncoding RNA Revolution—Trashing old rules to forge new ones. Cell. 2014 Mar;157(1):77–94. DOI:10.1016/j.cell.2014.03.008
  • Beermann J, Piccoli M-T, Viereck J, et al. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016 Oct;96(4):1297–1325. DOI:10.1152/physrev.00041.2015
  • Dash S, Shakyawar SK, Sharma M, et al. Big data in healthcare: management, analysis and future prospects. J Big Data. 2019 Dec;6(1):54. doi: 10.1186/s40537-019-0217-0
  • Liu CH, Wu D-Y, Pollock JD. Bioinformatic challenges of big data in non-coding RNA research. Front Genet. 2012;3. DOI:10.3389/fgene.2012.00178
  • Huang C-K, Kafert-Kasting S, Thum T. Preclinical and clinical development of noncoding RNA therapeutics for cardiovascular disease. Circ Res. 2020 Feb;126(5):663–678. DOI:10.1161/CIRCRESAHA.119.315856
  • Forterre A, Komuro H, Aminova S, et al. A comprehensive review of cancer MicroRNA therapeutic delivery strategies. Cancers (Basel). 2020 Jul;12(7):1852. DOI:10.3390/cancers12071852
  • Grillone K, Riillo, C, and Scionti, F, et al. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic ‘dark matter. J Exp Clin Cancer Res. 2020 Dec;39(1):117. DOI:10.1186/s13046-020-01622-x
  • Shah V, Shah J. Recent trends in targeting miRNAs for cancer therapy. J Pharm Pharmacol. 2020 Nov;72(12):1732–1749. DOI:10.1111/jphp.13351
  • Finotti A, Fabbri E, Lampronti I, et al. MicroRNAs and Long Non-coding RNAs in Genetic Diseases. Mol Diagn Ther. 2019 Apr;23(2):155–171. DOI:10.1007/s40291-018-0380-6
  • Ling H. Non-coding RNAs: therapeutic strategies and delivery systems Adv Exp Med Biol . 2016 937 ;229–237 doi:10.1007/978-3-319-42059-2_12.
  • Ling H, Fabbri M, Calin Ga. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013 Nov;12(11):847–865. DOI:10.1038/nrd4140
  • Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017 Mar;16(3):203–222. DOI:10.1038/nrd.2016.246
  • van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov. 2012 Nov;11(11):860–872. DOI:10.1038/nrd3864
  • Li S, Qian T, Wang X, et al. Noncoding RNAs and their potential therapeutic applications in tissue engineering. Engineering. 2017 Feb;3(1):3–15. DOI:10.1016/J.ENG.2017.01.005
  • McElhinney JMWR, Hasan A, Sajini AA. The epitranscriptome landscape of small noncoding RNAs in stem cells. Stem Cells. Jun 2020. DOI:10.1002/stem.3233
  • Winkle M, El-Daly SM, Fabbri M, et al. Noncoding RNA therapeutics - challenges and potential solutions. Nature Reviews. Drug Discovery. 2021 Aug;20(8):629–651. DOI:10.1038/s41573-021-00219-z
  • Duan Z, Yu A-M. Bioengineered non-coding RNA agent (BERA) in action. Bioengineered. 2016 Nov;7(6):411–417. DOI:10.1080/21655979.2016.1207011
  • Dash S, Balasubramaniam M, Dash C, et al. Biotin-based pulldown assay to validate mRNA targets of cellular miRNAs. J Vis Exp. Jun 2018;136. doi:10.3791/57786
  • Bartel DP. MicroRNAs. Cell. 2004 Jan;116(2):281–297. DOI:10.1016/S0092-8674(04)00045-5
  • Yao R-W, Wang Y, Chen -L-L. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019 May;21(5):542–551. DOI:10.1038/s41556-019-0311-8
  • Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017 Dec;18(1):206. DOI:10.1186/s13059-017-1348-2
  • Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009 Jul;23(13):1494–1504. DOI:10.1101/gad.1800909
  • Salta E, De Strooper B. Noncoding RNAs in neurodegeneration. Nat Rev Neurosci. 2017 Oct;18(10):627–640. DOI:10.1038/nrn.2017.90
  • Pomper N, Liu Y, Hoye ML, et al. CNS microRNA profiles: a database for cell type enriched microRNA expression across the mouse central nervous system. Sci Rep. 2020 December;10(1):4921. DOI:10.1038/s41598-020-61307-5
  • Isakova A, Fehlmann T, Keller A, et al. A mouse tissue atlas of small noncoding RNA. Proc Natl Acad Sci. 2020 October;117(41):25634–25645. DOI:10.1073/pnas.2002277117
  • Dash S, Balasubramaniam, M, and Martínez-Rivera, F.J., et al. Cocaine-regulated microRNA miR-124 controls poly (ADP-ribose) polymerase-1 expression in neuronal cells. Sci Rep. 2020 December;10(1):11197. DOI:10.1038/s41598-020-68144-6
  • Sun Y, Luo Z-M, Guo X-M, et al. An updated role of microRNA-124 in central nervous system disorders: a review. Front Cell Neurosci. 2015 May;9. DOI:10.3389/fncel.2015.00193
  • Gokool A, Anwar F, Voineagu I. The landscape of circular RNA expression in the human brain. Biol Psychiatry. 2020 Feb;87(3):294–304. DOI:10.1016/j.biopsych.2019.07.029
  • Barry G, Briggs, J, and Vanichkina, D, et al. The long non-coding RNA Gomafu is acutely regulated in response to neuronal activation and involved in schizophrenia-associated alternative splicing. Mol Psychiatry. 2014 April;19(4):486–494. DOI:10.1038/mp.2013.45
  • Floris G, Zhang L, Follesa P, et al. Regulatory role of circular RNAs and neurological disorders. Mol Neurobiol. 2017 Sep;54(7):5156–5165. DOI:10.1007/s12035-016-0055-4
  • Guerra B, Lima, J, Araujo, BHS, and Torres, LB, et al. Biogenesis of circular RNAs and their role in cellular and molecular phenotypes of neurological disorders. Semin Cell Dev Biol. 2021June;114:1–10. DOI:10.1016/j.semcdb.2020.08.003
  • Shi Y, Song , R, Wang, Z, and Zhang, H, et al. Potential clinical value of circular RNAs as peripheral biomarkers for the diagnosis and treatment of major depressive disorder. EBioMedicine. 2021April;66:103337. DOI:10.1016/j.ebiom.2021.103337
  • Ma Y, Liu Y, Jiang Z. CircRNAs: a new perspective of biomarkers in the nervous system. Biomed Pharmacother. 2020Aug;128:110251. DOI:10.1016/j.biopha.2020.110251
  • Lu S, Yang , X, Wang, C, and Chen, S, et al. Current status and potential role of circular RNAs in neurological disorders. J Neurochem. 2019 Aug;150(3):237–248. DOI:10.1111/jnc.14724
  • Zuo L, Zhang, L, and Zu, J, et al. Circulating circular RNAs as biomarkers for the diagnosis and prediction of outcomes in acute ischemic stroke. Stroke. 2020 January;51(1):319–323. DOI:10.1161/STROKEAHA.119.027348
  • Qureshi IA, Mehler MF. Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics. 2013 Oct;10(4):632–646. DOI:10.1007/s13311-013-0199-0
  • Briggs JA, Wolvetang EJ, Mattick JS, et al. Mechanisms of long non-coding RNAs in mammalian nervous system development, plasticity, disease, and evolution. Neuron. 2015 December;88(5):861–877. DOI:10.1016/j.neuron.2015.09.045
  • Mercer TR, Dinger ME, Mariani J, et al. Noncoding RNAs in long-term memory formation. Neurosci. 2008 October;14(5):434–445. DOI:10.1177/1073858408319187
  • Bernard D, Prasanth, KV, and Tripathi , V, et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. Embo J. 2010 September;29(18):3082–3093. DOI:10.1038/emboj.2010.199
  • Rajasethupathy P, Antonov, I, and Sheridan, R, et al. A role for neuronal piRNAs in the Epigenetic control of memory-related synaptic plasticity. Cell. 2012 April;149(3):693–707. DOI:10.1016/j.cell.2012.02.057
  • Lin N, Chang , KY, and Li, Z, et al. An Evolutionarily Conserved Long noncoding RNA TUNA controls Pluripotency and neural lineage commitment. Mol Cell. 2014 March;53(6):1005–1019. DOI:10.1016/j.molcel.2014.01.021
  • Bond AM, Vangompel, MJ, and Sametsky, EA, et al. Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nat Neurosci. 2009 August;12(8):1020–1027. DOI:10.1038/nn.2371
  • Onoguchi M, Hirabayashi Y, Koseki H, et al. A noncoding RNA regulates the neurogenin1 gene locus during mouse neocortical development. Proc Natl Acad Sci. 2012 October;109(42):16939–16944. DOI:10.1073/pnas.1202956109
  • Ng S-Y, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. Embo J. 2012 Feb;31(3):522–533. DOI:10.1038/emboj.2011.459
  • Mercer TR, Qureshi, IA, and Gokhan, S, et al. Long noncoding RNAs in neuronal-glial fate specification and oligodendrocyte lineage maturation. BMC Neurosci. 2010 December;11(1):14. DOI:10.1186/1471-2202-11-14
  • Tochitani S, Hayashizaki Y. Nkx2.2 antisense RNA overexpression enhanced oligodendrocytic differentiation. Biochem Biophys Res Commun. 2008 Aug;372(4):691–696. DOI:10.1016/j.bbrc.2008.05.127
  • Rani N, Nowakowski, TJ, and Zhou, H, et al. A primate lncrna mediates notch signaling during neuronal development by sequestering miRNA. Neuron. 2016 June;90(6):1174–1188. DOI:10.1016/j.neuron.2016.05.005
  • Sauvageau M, Goff, LA, and Lodato, S, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013 December;2. DOI:10.7554/eLife.01749
  • Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014 January;15(1):7–21. DOI:10.1038/nrg3606
  • Hébert SS, Papadopoulou, AS, and Smith, P, et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet. 2010 October;19(20):3959–3969. DOI:10.1093/hmg/ddq311
  • Goff LA, Groff, AF, and Sauvageau, M, et al Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Natl Acad Sci. 2015 June;112(22):6855–6862. DOI:10.1073/pnas.1411263112
  • Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019 October;179(2):312–339. DOI:10.1016/j.cell.2019.09.001
  • DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019 December;14(1):32. DOI:10.1186/s13024-019-0333-5
  • Idda ML, Munk R, Abdelmohsen K, et al. Noncoding RNAs in Alzheimer’s disease. Wiley Interdiscip Rev RNA. 2018 March;9(2):e1463. DOI:10.1002/wrna.1463
  • Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: an integrative review. Progress in Neurobiology. 2017Sep;156:1–68. DOI:10.1016/j.pneurobio.2017.03.004
  • Wang X, Liu, D, and Huang, HZ, et al. A novel MicroRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in alzheimer’s Disease. Biol Psychiatry. 2018 March;83(5):395–405. DOI:10.1016/j.biopsych.2017.07.023
  • Cosã-n-tomã¡s M, Alvarez-López, MJ, and Sanchez-Roige, S, et al. Epigenetic alterations in hippocampus of SAMP8 senescent mice and modulation by voluntary physical exercise. Front Aging Neurosci. 2014 Mar;6. DOI:10.3389/fnagi.2014.00051
  • Boissonneault V, Plante I, Rivest S, et al. MicroRNA-298 and MicroRNA-328 regulate expression of mouse β-amyloid precursor protein-converting enzyme 1. J Biol Chem. 2009 Jan;284(4):1971–1981. DOI:10.1074/jbc.M807530200
  • Zhu H-C, Wang, L, and Wang, M, et al. MicroRNA-195 downregulates Alzheimer’s disease amyloid-β production by targeting BACE1. Brain Res Bull. 2012 Sep;88(6):596–601. DOI:10.1016/j.brainresbull.2012.05.018
  • Makeyev EV, Zhang J, Carrasco MA, et al. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative Pre-mRNA splicing. Mol Cell. 2007 August;27(3):435–448. DOI:10.1016/j.molcel.2007.07.015
  • Fang M, Wang, J, and Zhang, X, et al. The miR-124 regulates the expression of BACE1/β-secretase correlated with cell death in Alzheimer’s disease. Toxicol Lett. 2012 February;209(1):94–105. DOI:10.1016/j.toxlet.2011.11.032
  • Hu Y-K, Wang X, Li L, et al. MicroRNA-98 induces an Alzheimer’s disease-like disturbance by targeting insulin-like growth factor 1. Neurosci Bull. 2013 December;29(6):745–751. DOI:10.1007/s12264-013-1348-5
  • Long JM, Ray B, Lahiri DK. MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. J Biol Chem. 2012 Sep;287(37):31298–31310. DOI:10.1074/jbc.M112.366336
  • Long JM, Ray B, Lahiri DK. MicroRNA-339-5p down-regulates protein expression of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects. J Biol Chem. 2014 February;289(8):5184–5198. DOI:10.1074/jbc.M113.518241
  • Jiang Y, Xu , B, and Chen, J, et al. Micro-RNA-137 inhibits tau hyperphosphorylation in Alzheimer’s disease and targets the CACNA1C gene in transgenic mice and human neuroblastoma SH-SY5Y Cells. Med Sci Monit. 2018Aug;24:5635–5644. DOI:10.12659/MSM.908765
  • Fransquet PD, Ryan J. Micro RNA as a potential blood-based epigenetic biomarker for Alzheimer’s disease. Clin Biochem. 2018Aug;58:5–14. DOI:10.1016/j.clinbiochem.2018.05.020
  • Das B, Yan R. Role of BACE1 in Alzheimer’s synaptic function. Transl Neurodegener. 2017 Dec;6(1):23. DOI:10.1186/s40035-017-0093-5
  • Mus E, Hof PR, Tiedge H. Dendritic BC200 RNA in aging and in Alzheimer’s disease. Proc Natl Acad Sci. 2007 June;104(25):10679–10684. DOI:10.1073/pnas.0701532104
  • Li H, Zheng L, Jiang A, et al. Identification of the biological affection of long noncoding RNA BC200 in Alzheimer’s disease. Neuroreport. 2018 Sep;29(13):1061–1067. DOI:10.1097/WNR.0000000000001057
  • Massone S, Vassallo, I, and Fiorino, G, et al. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis. 2011 February;41(2):308–317. DOI:10.1016/j.nbd.2010.09.019
  • Huang J, Huen, MS, and Kim, H, et al. RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat Cell Biol. 2009 May;11(5):592–603. DOI:10.1038/ncb1865
  • Straten G, Eschweiler GW, Maetzler W, et al. Glial Cell-Line Derived Neurotrophic Factor (GDNF) Concentrations in Cerebrospinal Fluid and Serum of Patients with Early Alzheimer’s disease and normal controls. J Alzheimer’s Dis. 2009 August;18(2):331–337. DOI:10.3233/JAD-2009-1146
  • Poewe W, Seppi, K, and Tanner, CM, et al. Parkinson disease. Nat Rev Dis Prim. 2017 Dec;3(1):17013. DOI:10.1038/nrdp.2017.13
  • Dickson DW. Parkinson’s Disease and Parkinsonism: neuropathology. Cold Spring Harb Perspect Med. 2012 Aug;2(8):a009258–a009258. DOI:10.1101/cshperspect.a009258
  • Goh SY, Chao YX, Dheen ST, et al. Role of MicroRNAs in Parkinson’s disease. Int J Mol Sci. 2019 Nov;20(22):5649. DOI:10.3390/ijms20225649
  • Briggs CE, Wang Y, Kong B, et al. Midbrain dopamine neurons in Parkinson׳s disease exhibit a dysregulated miRNA and target-gene network. Brain Res. 2015 Aug;1618:111–121. DOI:10.1016/j.brainres.2015.05.021
  • Tatura R, Kraus, T, and Giese, A, et al. Parkinson’s disease: SNCA-, PARK2-, and LRRK2- targeting microRNAs elevated in cingulate gyrus. Parkinsonism Relat Disord. 2016December;33:115–121. DOI:10.1016/j.parkreldis.2016.09.028
  • Gui Y, Liu H, Zhang L, et al. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget. 2015 November;6(35):37043–37053. DOI:10.18632/oncotarget.6158
  • Martins M, Rosa, A, and Guedes, LC, et al. Convergence of miRNA expression Profiling, α-synuclein interacton and GWAS in Parkinson’s disease. PLoS One. 2011 Oct;6(10):e25443. DOI:10.1371/journal.pone.0025443
  • Chen L, Yang J, Lü J, et al. Identification of aberrant circulating miRNAs in Parkinson’s disease plasma samples. Brain Behav. 2018 Apr;8(4):e00941. DOI:10.1002/brb3.941
  • Burgos K, Malenica, I, and Metpally, R, et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS One. 2014 May;9(5):e94839. DOI:10.1371/journal.pone.0094839
  • Margis R, Margis R, Rieder CRM. Identification of blood microRNAs associated to Parkinsońs disease. J Biotechnol. 2011 Mar;152(3):96–101. DOI:10.1016/j.jbiotec.2011.01.023
  • Bai X, Tang , Y, and Yu, M, et al. Downregulation of blood serum microRNA 29 family in patients with Parkinson’s disease. Sci Rep. 2017 December;7(1):5411. DOI:10.1038/s41598-017-03887-3
  • Kole AJ, Swahari V, Hammond SM, et al. miR-29b is activated during neuronal maturation and targets BH3-only genes to restrict apoptosis. Genes Dev. 2011 Jan;25(2):125–130. DOI:10.1101/gad.1975411
  • Roshan R, Shridhar, S, and Sarangdhar, MA, et al. Brain-specific knockdown of miR-29 results in neuronal cell death and ataxia in mice. RNA. 2014 Aug;20(8):1287–1297. DOI:10.1261/rna.044008.113
  • Cao L, Zhang, Y, and Zhang, S, et al. MicroRNA-29b alleviates oxygen and glucose deprivation/reperfusion-induced injury via inhibition of the p53‑dependent apoptosis pathway in N2a neuroblastoma cells. Exp Ther Med. 2017 Oct. DOI:10.3892/etm.2017.5410
  • Xu S, Wu, W, and Huang, H, et al. The p53/miRNAs/Ccna2 pathway serves as a novel regulator of cellular senescence: complement of the canonical p53/p21 pathway. Aging Cell. 2019 Jun;18(3):e12918. DOI:10.1111/acel.12918
  • Martinez I, Cazalla D, Almstead LL, et al. miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci. 2011 Jan;108(2):522–527. DOI:10.1073/pnas.1017346108
  • Papadopoulou AS, Serneels, L, and Achsel, T, et al. Deficiency of the miR-29a/b-1 cluster leads to ataxic features and cerebellar alterations in mice. Neurobiol Dis. 2015Jan;73:275–288. DOI:10.1016/j.nbd.2014.10.006
  • Steiner DF, Thomas, MF, and Hu, JK, et al. MicroRNA-29 Regulates T-Box Transcription Factors and Interferon-γ Production in Helper T Cells. Immunity. 2011 Aug;35(2):169–181. DOI:10.1016/j.immuni.2011.07.009
  • Chandiran K, Lawlor, R, and Pannuti, A, et al. Notch1 primes CD4 T cells for T helper type I differentiation through its early effects on miR-29. Mol Immunol. 2018Jul;99:191–198. DOI:10.1016/j.molimm.2018.05.002
  • Smith KM, Guerau-de-Arellano, M, and Costinean, S, et al. miR-29ab1 deficiency identifies a negative feedback loop controlling th1 bias that is dysregulated in multiple sclerosis. J Immunol. 2012 Aug;189(4):1567–1576. DOI:10.4049/jimmunol.1103171
  • Lyu G, Guan, Y, and Zhang, C, et al. TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat Commun. 2018 Dec;9(1):2560. DOI:10.1038/s41467-018-04994-z
  • Morita S, Horii T, Kimura M, et al. miR-29 Represses the Activities of DNA Methyltransferases and DNA Demethylases. Int J Mol Sci. 2013 Jul;14(7):14647–14658. DOI:10.3390/ijms140714647
  • Chatterjee P, Roy D. Comparative analysis of RNA-Seq data from brain and blood samples of Parkinson’s disease. Biochem Biophys Res Commun. 2017 Mar;484(3):557–564. DOI:10.1016/j.bbrc.2017.01.121
  • Horst CH, Schlemmer, F, and de Aguiar Montenegro, N, et al. Signature of Aberrantly Expressed microRNAs in the Striatum of Rotenone-Induced Parkinsonian Rats. Neurochem Res. 2018 Nov;43(11):2132–2140. DOI:10.1007/s11064-018-2638-0
  • Boros FA, Maszlag-Török R, Vécsei L, et al. Increased level of NEAT1 long non-coding RNA is detectable in peripheral blood cells of patients with Parkinson’s disease. Brain Res. 2020Mar;1730:146672. DOI:10.1016/j.brainres.2020.146672
  • Chen M-Y, Fan K, Zhao L-J, et al. Long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) sponges microRNA-124-3p to up-regulate phosphodiesterase 4B (PDE4B) to accelerate the progression of Parkinson’s disease. Bioengineered. 2021 Jan;12(1):708–719. DOI:10.1080/21655979.2021.1883279
  • Lin Q, Hou S, Dai Y, et al. LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP. Biol Chem. 2019 Aug;400(9):1217–1228. DOI:10.1515/hsz-2018-0431
  • Coupland KG, Kim WS, Halliday GM, et al. Role of the long non-coding RNA MAPT-AS1 in regulation of Microtubule Associated Protein Tau (MAPT) Expression in Parkinson’s disease. PLoS One. 2016 Jun;11(6):0157924. DOI:10.1371/journal.pone.0157924
  • Barry G. Integrating the roles of long and small non-coding RNA in brain function and disease. Mol Psychiatry. 2014 Apr;19(4):410–416. DOI:10.1038/mp.2013.196
  • Guennewig B, and Cooper AA. The central role of noncoding RNA in the BRAIN Int Rev Neurobiol . 2014:153–194 doi:10.1016/B978-0-12-801105-8.00007-2.
  • Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012 Aug;13(8):528–541. DOI:10.1038/nrn3234
  • Rothwell N, Allan S, Toulmond S. The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J Clin Invest. 1997 Dec;100(11):2648–2652. DOI:10.1172/JCI119808
  • Barone FC, Arvin, B, and White, RF, et al. Tumor Necrosis Factor-α. Stroke. 1997 Jun;28(6):1233–1244. DOI:10.1161/01.STR.28.6.1233
  • Cheng HS, Njock M-S, Khyzha N, et al. Noncoding RNAs regulate NF-ÎoB signaling to modulate blood vessel inflammation. Front Genet. 2014 December;5. DOI:10.3389/fgene.2014.00422
  • Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev. 2015 July;266(1):72–92. DOI:10.1111/imr.12302
  • Cheng HS, Sivachandran, and Lau, A, et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013 Jul;5(7): DOI:10.1002/emmm.201202318
  • Hunsberger JG, Fessler EB, Wang Z, et al. Post-insult valproic acid-regulated microRNAs: potential targets for cerebral ischemia. American Journal of Translational Research. 2012;4(3):316–332. [Online]. Available http://www.ncbi.nlm.nih.gov/pubmed/22937209
  • Pizzino G, Irrera, N, and Cucinotta, M, et al. Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017;1–13. DOI:10.1155/2017/8416763
  • Mittal M, Siddiqui MR, Tran K, et al. Reactive Oxygen Species in Inflammation and Tissue Injury. Antioxid Redox Signal. 2014 Mar;20(7):1126–1167. DOI:10.1089/ars.2012.5149
  • Zhong C, Yin C, Niu G, et al. MicroRNA miR-497 is closely associated with poor prognosis in patients with cerebral ischemic stroke. Bioengineered. 2021 Jan;12(1):2851–2862. DOI:10.1080/21655979.2021.1940073
  • Xu W, Gao, L, and Zheng, J, et al. The Roles of MicroRNAs in stroke: possible therapeutic targets. Cell Transplant. 2018 Dec;27(12):1778–1788. DOI:10.1177/0963689718773361
  • Li G, Morris-Blanco KC, Lopez MS, et al. Impact of microRNAs on ischemic stroke: from pre- to post-disease. Progress in Neurobiology. 2018Apr;163-164:59–78. DOI:10.1016/j.pneurobio.2017.08.002
  • Tiedt S, Dichgans M. Role of Non-Coding RNAs in Stroke. Stroke. 2018 Dec;49(12):3098–3106. DOI:10.1161/STROKEAHA.118.021010
  • Zhao H, Tao, Z, and Wang, R, et al. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res. 2014Dec;1592:65–72. DOI:10.1016/j.brainres.2014.09.055
  • Liu P, Zhao, H, and Wang, R, et al. MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing Oxidative Stress. Stroke. 2015 Feb;46(2):513–519. DOI:10.1161/STROKEAHA.114.007482
  • Wu J, Du K, Lu X. Elevated expressions of serum miR-15a, miR-16, and miR-17-5p are associated with acute ischemic stroke. International Journal of Clinical and Experimental Medicine. 2015;8(11):21071–21079. [Online]. Available http://www.ncbi.nlm.nih.gov/pubmed/26885038
  • Tiedt S, Prestel, M, and Malik, R, et al. RNA-seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as potential biomarkers for acute ischemic stroke. Circ Res. 2017 Sep;121(8):970–980. DOI:10.1161/CIRCRESAHA.117.311572
  • Wang S-W, Liu Z, Shi Z-S. Non-Coding RNA in acute ischemic stroke: mechanisms, biomarkers and therapeutic targets. Cell Transplant. 2018 Dec;27(12):1763–1777. DOI:10.1177/0963689718806818
  • Yang R, Xu B, Yang B, et al. Non-coding RNAs: the extensive and interactive regulators of the blood-brain barrier permeability. RNA Biol. 2021 Jul;1–9. DOI:10.1080/15476286.2021.1950465
  • Choudhuri S. Small noncoding RNAs: biogenesis, function, and emerging significance in toxicology. J Biochem Mol Toxicol. 2010 Feb;24(3):195–216. DOI:10.1002/jbt.20325
  • Watson CN, Belli A, Di Pietro V. Small Non-coding RNAs: new class of biomarkers and potential therapeutic targets in neurodegenerative disease. Front Genet. 2019 Apr;10. DOI:10.3389/fgene.2019.00364
  • Hennessy EJ. Cardiovascular Disease and long noncoding RNAs. Circ Cardiovasc Genet. 2017 Aug;10(4. DOI:10.1161/CIRCGENETICS.117.001556
  • Hu W, Ding H, Xu Q, et al. Relationship between long noncoding RNA H19 polymorphisms and risk of coronary artery disease in a chinese population: a case-control study. Dis Markers. 2020May;2020:1–11. DOI:10.1155/2020/9839612
  • Ruiz-Orera J, Albà MM. Conserved regions in long non-coding RNAs contain abundant translation and protein–RNA interaction signatures. NAR Genomics Bioinforma. 2019 Apr;1(1):e2–e2. doi: 10.1093/nargab/lqz002
  • Kutter C, Watt, S, and Stefflova, K, et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet. 2012 Jul;8(7):e1002841. DOI:10.1371/journal.pgen.1002841
  • Guttman M, Garber, M, and Levin, JZ, et al. Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol. 2010 May;28(5):503–510. DOI:10.1038/nbt.1633
  • Angelucci F, Cechova K, Valis M, et al. MicroRNAs in Alzheimer’s disease: diagnostic markers or therapeutic agents?. Front Pharmacol. 2019 Jun;10. DOI:10.3389/fphar.2019.00665
  • Wei W, Wang Z-Y, Ma L-N, et al. MicroRNAs in Alzheimer’s disease: function and potential applications as diagnostic biomarkers. Front Mol Neurosci. 2020 Aug;13. DOI:10.3389/fnmol.2020.00160
  • Wang M, Qin L, Tang B. MicroRNAs in Alzheimer’s Disease. Front Genet. 2019 Mar;10. DOI:10.3389/fgene.2019.00153
  • Yang S, Lim K-H, Kim S-H, et al. Molecular landscape of long noncoding RNAs in brain disorders. Mol Psychiatry. 2021 Apr;26(4):1060–1074. DOI:10.1038/s41380-020-00947-5
  • Xin C, Liu J. Long non-coding RNAs in Parkinson’s disease. Neurochem Res. 2021 May;46(5):1031–1042. DOI:10.1007/s11064-021-03230-3
  • Elkouris M, Kouroupi, G, and Vourvoukelis, A, et al. Long Non-coding RNAs associated with neurodegeneration-linked genes are reduced in Parkinson’s disease patients. Front Cell Neurosci. 2019 Feb;13. DOI:10.3389/fncel.2019.00058
  • Hoss AG, Labadorf A, Beach TG, et al. microRNA Profiles in Parkinson’s disease prefrontal cortex. Front Aging Neurosci. 2016 Mar;8. DOI:10.3389/fnagi.2016.00036
  • Nies YH, Mohamad Najib NH, Lim WL, et al. MicroRNA dysregulation in Parkinson’s disease: a narrative review. Front Neurosci. 2021 Apr;15. DOI:10.3389/fnins.2021.660379
  • Cao T, Zhen X-C. Dysregulation of miRNA and its potential therapeutic application in schizophrenia. CNS Neurosci Ther. 2018 Jul;24(7):586–597. DOI:10.1111/cns.12840
  • Tian T, Wei, Z, and Chang, X, et al. The long noncoding RNA landscape in amygdala tissues from schizophrenia patients. EBioMedicine. 2018Aug;34:171–181. DOI:10.1016/j.ebiom.2018.07.022
  • Li L, Zhuang Y, Zhao X, et al. Long Non-coding RNA in Neuronal Development and Neurological Disorders. Front Genet. 2019 Jan;9. DOI:10.3389/fgene.2018.00744
  • Johnson R, Richter, N, and Jauch, R, et al. Human accelerated region 1 noncoding RNA is repressed by REST in Huntington’s disease. Physiol Genomics. 2010 May;41(3):269–274. DOI:10.1152/physiolgenomics.00019.2010
  • Samadian M, Gholipour M, Hajiesmaeili M, et al. The Eminent Role of microRNAs in the Pathogenesis of Alzheimer’s Disease. Front Aging Neurosci. 2021 Mar;13. DOI:10.3389/fnagi.2021.641080
  • Chang F, Zhang L-H, Xu W-P, et al. microRNA-9 attenuates amyloidβ-induced synaptotoxicity by targeting calcium/calmodulin-dependent protein kinase kinase 2. Mol Med Rep. 2014 May;9(5):1917–1922. DOI:10.3892/mmr.2014.2013
  • Ramachandran D, Roy U, Garg S, et al. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J. 2011 Apr;278(7):1167–1174. DOI:10.1111/j.1742-4658.2011.08042.x
  • Wang G, Huang , Y, and Wang, LL, et al. MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease. Sci Rep. 2016 Jul;6(1):26697. DOI:10.1038/srep26697
  • Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in Alzheimer’s disease temporal lobe neocortex. Neurosci Lett. 2009 Aug;459(2):100–104. DOI:10.1016/j.neulet.2009.04.052
  • Zhuang J, Chen, Z, and Cai, P, et al. Targeting MicroRNA-125b promotes neurite outgrowth but represses cell apoptosis and inflammation via Blocking PTGS2 and CDK5 in a FOXQ1-dependent way in alzheimer disease. Front Cell Neurosci. 2020 Dec;14. DOI:10.3389/fncel.2020.587747
  • Banzhaf-Strathmann J, Benito E, May S, et al. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. The EMBO Journal. 2014 Aug;33(15):1667–1680. DOI:10.15252/embj.201387576
  • An F, Gong G, Wang Y, et al. MiR-124 acts as a target for Alzheimer’s disease by regulating BACE1. Oncotarget. 2017 Dec;8(69):114065–114071. DOI:10.18632/oncotarget.23119
  • Hou TY, Zhou , Y, and Zhu, LS, et al. Correcting abnormalities in miR‐124/PTPN1 signaling rescues tau pathology in Alzheimer’s disease. J Neurochem. 2020 Aug;154(4):441–457. DOI:10.1111/jnc.14961
  • Kozuka T, Omori, Y, and Watanabe, S, et al. miR-124 dosage regulates prefrontal cortex function by dopaminergic modulation.Sci Rep. 2019 Dec;9(1):3445. DOI:10.1038/s41598-019-38910-2
  • Wang W-X, Rajeev, BW, and Stromberg, AJ, et al. The Expression of MicroRNA miR-107 decreases early in Alzheimer’s Disease and May Accelerate disease progression through regulation of -site amyloid precursor protein-cleaving enzyme 1. J Neurosci. 2008 Jan;28(5):1213–1223. DOI:10.1523/JNEUROSCI.5065-07.2008
  • Chen W, Wu, L, and Hu, Y, et al. MicroRNA-107 ameliorates damage in a cell model of Alzheimer’s disease by mediating the FGF7/FGFR2/PI3K/Akt pathway. J Mol Neurosci. 2020 October;70(10):1589–1597. DOI:10.1007/s12031-020-01600-0
  • Faghihi MA, Zhang, M, and Huang, J, et al. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol. 2010 May;11(5):R56. DOI:10.1186/gb-2010-11-5-r56
  • Liu T, Huang, Y, and Chen, J, et al. Attenuated ability of BACE1 to cleave the amyloid precursor protein via silencing long noncoding RNA BACE1-AS expression. Mol Med Rep. 2014 September;10(3):1275–1281. DOI:10.3892/mmr.2014.2351
  • Li D, Zhang J, Li X, et al. Insights into lncRNAs in Alzheimer’s disease mechanisms. RNA Biol. 2021 Jul;18(7):1037–1047. DOI:10.1080/15476286.2020.1788848
  • Parenti R, Paratore S, Torrisi A, et al. A natural antisense transcript against Rad18, specifically expressed in neurons and upregulated during β-amyloid-induced apoptosis. Eur J Neurosci. 2007 Oct;26(9):2444–2457. DOI:10.1111/j.1460-9568.2007.05864.x
  • Yamanaka Y, Faghihi MA, Magistri M, et al. Antisense RNA Controls LRP1 sense transcript expression through interaction with a chromatin-associated protein, HMGB2. Cell Rep. 2015 May;11(6):967–976. DOI:10.1016/j.celrep.2015.04.011
  • Zhang L, Chen X, Chang M, et al. MiR-30c-5p/ATG5 axis regulates the progression of Parkinson’s Disease. Front Cell Neurosci. 2021 May;15. DOI:10.3389/fncel.2021.644507
  • Swahari V, Nakamura, A, and Hollville, E, et al. MicroRNA-29 is an essential regulator of brain maturation through regulation of CH methylation. Cell Rep. 2021 Apr;35(1):108946. DOI:10.1016/j.celrep.2021.108946
  • Wang R, Yao, J, and Gong, F, et al. miR‐29c‐3p regulates TET2 expression and inhibits autophagy process in Parkinson’s disease models. Genes Cells. 2021 Sep;26(9):684–697. DOI:10.1111/gtc.12877
  • Shamsuzzama LK, Haque R, Nazir A. Role of MicroRNA Let-7 in modulating multifactorial aspect of neurodegenerative diseases: an overview. Mol Neurobiol. 2016 Jul;53(5):2787–2793. DOI:10.1007/s12035-015-9145-y
  • Indrieri A, Carrella S, Carotenuto P, et al. The pervasive role of the miR-181 family in development, neurodegeneration, and Cancer. Int J Mol Sci. 2020 Mar;21(6):2092. DOI:10.3390/ijms21062092
  • Liu Y, Song Y, Zhu X. MicroRNA-181a in Parkinson’s Disease by Inhibiting p38 Mitogen-Activated Protein Kinase (MAPK)/c-Jun N-Terminal Kinases (JNK) Signaling pathways. Med Sci Monit. 2017Apr;23:1597–1606. DOI:10.12659/MSM.900218
  • Ye Y, He, X, and Lu, F, et al. A lincRNA-p21/miR-181 family feedback loop regulates microglial activation during systemic LPS- and MPTP- induced neuroinflammation. Cell Death Dis. 2018 Aug;9(8):803. DOI:10.1038/s41419-018-0821-5
  • Scheele C, Petrovic, N, and Faghihi, MA, et al. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genomics. 2007 Dec;8(1):74. DOI:10.1186/1471-2164-8-74
  • Carrieri C, Forrest, AR, and Santoro, C, et al. Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front Cell Neurosci. 2015 Apr;9. DOI:10.3389/fncel.2015.00114
  • Wang S, Zhang X, Guo Y, et al. The long noncoding RNA HOTAIR promotes Parkinson’s disease by upregulating LRRK2 expression. Oncotarget. 2017 Apr;8(15):24449–24456. DOI:10.18632/oncotarget.15511
  • Cao B, Wang T, Qu Q, et al. Long Noncoding RNA SNHG1 promotes neuroinflammation in Parkinson’s Disease via Regulating miR-7/NLRP3 Pathway. Neuroscience. 2018Sep;388:118–127. DOI:10.1016/j.neuroscience.2018.07.019
  • Ni C, Jiang, W, and Wang, Z, et al. LncRNA-AC006129.1 reactivates a SOCS3-mediated anti-inflammatory response through DNA methylation-mediated CIC downregulation in schizophrenia. Mol Psychiatry. 2021 Aug;26(8):4511–4528. DOI:10.1038/s41380-020-0662-3
  • Shi Y, and Shang J. Long noncoding RNA expression profiling using arraystar LncRNA Microarrays Methods Mol Biol . 2016 1402 ;43–61 doi:10.1007/978-1-4939-3378-5_6.
  • Miller BH, Zeier, Z, and Xi, L, et al. MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proc Natl Acad Sci. 2012 Feb;109(8):3125–3130. DOI:10.1073/pnas.1113793109
  • Wanet A, Tacheny A, Arnould T, et al. miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res. 2012 Jun;40(11):4742–4753. DOI:10.1093/nar/gks151
  • Mellios N, Huang H-S, Baker SP, et al. Molecular Determinants of Dysregulated GABAergic gene expression in the prefrontal cortex of subjects with Schizophrenia. Biol Psychiatry. 2009 Jun;65(12):1006–1014. DOI:10.1016/j.biopsych.2008.11.019
  • Merelo V, Durand, D, and Lescallette, AR, et al. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics. Front Mol Neurosci. 2015 Sep;8. DOI:10.3389/fnmol.2015.00057
  • Wright C, Turner JA, Calhoun VD, et al. Potential Impact of miR-137 and Its Targets in Schizophrenia. Front Genet. 2013;4. DOI:10.3389/fgene.2013.00058
  • Chung DW, Rudnicki DD, Yu L, et al. A natural antisense transcript at the Huntington’s disease repeat locus regulates HTT expression. Hum Mol Genet. 2011 Sep;20(17):3467–3477. DOI:10.1093/hmg/ddr263
  • Liu T, Im W, Mook-Jung I, et al. MicroRNA-124 slows down the progression of Huntington′s disease by promoting neurogenesis in the striatum. Neural Regen Res. 2015;10(5):786.
  • Park S-Y, Lee JH, Ha M, et al. miR-29 miRNAs activate p53 by targeting p85α and CDC42. Nat Struct Mol Biol. 2009 Jan;16(1):23–29. DOI:10.1038/nsmb.1533
  • Chanda K, Das, S, and Chakraborty, J, et al. Altered levels of long NcRNAs Meg3 and neat1 in cell and animal models of huntington’s Disease. RNA Biol. 2018 Oct;15(10):1348–1363. DOI:10.1080/15476286.2018.1534524
  • Khalil AM, Guttman, M, and Huarte, M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci. 2009 Jul;106(28):11667–11672. DOI:10.1073/pnas.0904715106
  • Perkins DO, Jeffries, CD, and Jarskog, LF, et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biol. 2007;8(2):27 doi:10.1186/gb-2007-8-2-r27.
  • Gardiner E, Beveridge, NJ, and Wu, JQ, et al. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol Psychiatry. 2012 Aug;17(8):827–840. DOI:10.1038/mp.2011.78
  • Wang W, Kwon EJ, Tsai L-H. MicroRNAs in learning, memory, and neurological diseases. Learn Mem. 2012 Aug;19(9):359–368. DOI:10.1101/lm.026492.112
  • Edbauer D, Neilson, JR, and Foster, KA, et al. Regulation of synaptic structure and function by FMRP-associated MicroRNAs miR-125b and miR-132. Neuron. 2010 Feb;65(3):373–384. DOI:10.1016/j.neuron.2010.01.005
  • Kenny P, Ceman S. RNA secondary structure modulates FMRP’s Bi-Functional Role in the MicroRNA Pathway. Int J Mol Sci. 2016 Jun;17(6):985. DOI:10.3390/ijms17060985
  • Bañez-Coronel M, Porta, S, and Kagerbauer, B, et al. A pathogenic mechanism in Huntington’s Disease Involves Small CAG-Repeated RNAs with neurotoxic activity. PLoS Genet. 2012 Feb;8(2):1002481. DOI:10.1371/journal.pgen.1002481
  • Johnson R, Zuccato C, Belyaev ND, et al. A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis. 2008 Mar;29(3):438–445. DOI:10.1016/j.nbd.2007.11.001
  • Packer AN, Xing Y, Harper SQ, et al. The Bifunctional microRNA miR-9/miR-9* Regulates REST and CoREST and Is Downregulated in Huntington’s Disease. J Neurosci. 2008 Dec;28(53):14341–14346. DOI:10.1523/JNEUROSCI.2390-08.2008
  • Lee S-T, Chu, K, and Im, WS, et al. Altered microRNA regulation in Huntington’s disease models. Exp Neurol. 2011 Jan;227(1):172–179. DOI:10.1016/j.expneurol.2010.10.012
  • Piket E, Zheleznyakova GY, Kular L, et al. Small non-coding RNAs as important players, biomarkers and therapeutic targets in multiple sclerosis: a comprehensive overview. J Autoimmun. 2019Jul;101:17–25. DOI:10.1016/j.jaut.2019.04.002
  • Amoruso A, Blonda, M, and Gironi, M, et al. Immune and central nervous system-related miRNAs expression profiling in monocytes of multiple sclerosis patients. Sci Rep. 2020 Dec;10(1):6125. DOI:10.1038/s41598-020-63282-3
  • Zhou Z, Xiong H, Xie F, et al. a meta-analytic review of the value of mirna for multiple sclerosis diagnosis. front neurol. 2020 feb;11. DOI:10.3389/fneur.2020.00132
  • Teuber‐Hanselmann S, Meinl E, Junker A. MicroRNAs in gray and white matter multiple sclerosis lesions: impact on pathophysiology. J Pathol. 2020 Apr;250(5):496–509. DOI:10.1002/path.5399
  • Bali P, Kenny PJ. MicroRNAs and Drug Addiction. Front Genet. 2013;4. DOI:10.3389/fgene.2013.00043
  • Gowen AM, Odegaard, KE, and Hernandez, J, et al. Role of microRNAs in the pathophysiology of addiction. WIREs RNA. 2021 May;12(3). DOI:10.1002/wrna.1637
  • Hollander JA, Im, HI, and Amelio, A, et al. Striatal microRNA controls cocaine intake through CREB signalling. Nature. 2010 Jul;466(7303):197–202. DOI:10.1038/nature09202
  • Chandrasekar V, Dreyer J-L. microRNAs miR-124, let-7d and miR-181a regulate Cocaine-induced Plasticity. Mol Cell Neurosci. 2009 Nov;42(4):350–362. DOI:10.1016/j.mcn.2009.08.009
  • Saba R, Störchel, PH, and Aksoy-Aksel, A, et al. Dopamine-Regulated MicroRNA MiR-181a controls GluA2 Surface Expression in Hippocampal Neurons. Mol Cell Biol. 2012 Feb;32(3):619–632. DOI:10.1128/MCB.05896-11
  • Eipper-Mains JE, Kiraly DD, Palakodeti D, et al. microRNA-Seq reveals cocaine-regulated expression of striatal microRNAs. RNA. 2011 Aug;17(8):1529–1543. DOI:10.1261/rna.2775511
  • Cohen-Armon M. Long-Term memory requires PolyADP-ribosylation. Science. 2004 Jun;304(5678):1820–1822. DOI:10.1126/science.1096775
  • Scobie KN, Damez-Werno, D, and Sun, H, et al. Essential role of poly(ADP-ribosyl)ation in cocaine action. Proc Natl Acad Sci. 2014 Feb;111(5):2005–2010. DOI:10.1073/pnas.1319703111
  • Dash S, Balasubramaniam, M, and Rana, T, et al. Poly (ADP-Ribose) Polymerase-1 (PARP-1) Induction by Cocaine Is Post-Transcriptionally Regulated by miR-125b. eneuro. 2017 Jul;4(4):ENEURO.0089–17.2017. DOI:10.1523/ENEURO.0089-17.2017
  • Dash S, Dash C, Pandhare J. Activation of proline metabolism maintains ATP levels during cocaine-induced polyADP-ribosylation. Amino Acids. Aug 2021. DOI:10.1007/s00726-021-03065-w
  • Bastle RM, Oliver, R, and Gardiner, A, et al. In silico identification and in vivo validation of miR-495 as a novel regulator of motivation for cocaine that targets multiple addiction-related networks in the nucleus accumbens. Mol Psychiatry. 2018 Feb;23(2):434–443. DOI:10.1038/mp.2016.238
  • Bannon MJ, Savonen, CL, and Jia, H, et al. Identification of long noncoding RNAs dysregulated in the midbrain of human cocaine abusers. J Neurochem. 2015 Oct;135(1):50–59. DOI:10.1111/jnc.13255
  • Xu H, Brown, AN, and Waddell, NJ, et al. Role of long noncoding RNA Gas5 in cocaine action. Biol Psychiatry. 2020 Nov;88(10):758–766. DOI:10.1016/j.biopsych.2020.05.004
  • Zhu L, Zhu, J, and Liu, Y, et al. Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse. BMC Neurosci. 2015 Dec;16(1):18. DOI:10.1186/s12868-015-0157-3
  • Condrat CE, Thompson, DC, and Barbu, MG, et al. miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells. 2020 Jan;9(2):276. DOI:10.3390/cells9020276
  • Gayosso-Gómez LV, Ortiz-Quintero B. Circulating MicroRNAs in blood and other body fluids as biomarkers for diagnosis, prognosis, and therapy response in lung cancer. Diagnostics. 2021 Mar;11(3):421. DOI:10.3390/diagnostics11030421
  • Florczuk M, Szpechcinski A, Chorostowska-Wynimko J. miRNAs as biomarkers and therapeutic targets in non-small cell lung cancer: current perspectives. Target Oncol. 2017 Apr;12(2):179–200. DOI:10.1007/s11523-017-0478-5
  • Gessner I, Fries JWU, Brune V, et al. Magnetic nanoparticle-based amplification of microRNA detection in body fluids for early disease diagnosis. J Mater Chem B. 2021;9(1):9–22.
  • Gessner I, Yu, X, and Jüngst, C, et al. Selective capture and purification of micrornas and intracellular proteins through antisense-vectorized magnetic nanobeads. Sci Rep. 2019 Dec;9(1):2069. DOI:10.1038/s41598-019-39575-7
  • Lee SWL, Paoletti, C, and Campisi, M, et al. MicroRNA delivery through nanoparticles. J Control Release. 2019Nov;313:80–95. DOI:10.1016/j.jconrel.2019.10.007
  • Lee TJ, Yoo, JY, and Shu, D, et al. RNA Nanoparticle-Based Targeted Therapy For Glioblastoma through Inhibition of Oncogenic miR-21. Mol Ther. 2017 Jul;25(7):1544–1555. DOI:10.1016/j.ymthe.2016.11.016
  • Kouri FM, Hurley, LA, and Daniel, WL, et al. miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma. Genes Dev. 2015 Apr;29(7):732–745. DOI:10.1101/gad.257394.114
  • Grafals-Ruiz N, Rios-Vicil, CI, and Lozada-Delgado, EL, et al. Brain targeted gold liposomes improve RNAi Delivery for Glioblastoma. Int J Nanomedicine. 2020Apr;15:2809–2828. DOI:10.2147/IJN.S241055
  • Gangemi CMA, Alaimo, S, and Pulvirenti, A, et al. Endogenous and artificial miRNAs explore a rich variety of conformations: a potential relationship between secondary structure and biological functionality. Sci Rep. 2020 Dec;10(1):453. DOI:10.1038/s41598-019-57289-8
  • Kotowska‐Zimmer A, Pewinska M, Olejniczak M. Artificial miRNAs as therapeutic tools: challenges and opportunities. WIREs RNA. 2021 Jul;12(4. DOI:10.1002/wrna.1640
  • Keskin S, Brouwers, CC, and Sogorb-Gonzalez, V, et al. AAV5-miHTT Lowers Huntingtin mRNA and protein without off-target effects in patient-derived neuronal cultures and astrocytes. Mol Ther - Methods Clin Dev. 2019Dec;15:275–284. DOI:10.1016/j.omtm.2019.09.010
  • Haussecker D. Current issues of RNAi therapeutics delivery and development. J Control Release. 2014Dec;195:49–54.DOI:10.1016/j.jconrel.2014.07.056
  • Judge AD, Bola G, Lee ACH, et al. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther. 2006 Mar;13(3):494–505. DOI:10.1016/j.ymthe.2005.11.002
  • Jackson AL. Widespread siRNA ‘off-target’ transcript silencing mediated by seed region sequence complementarity. RNA. 2006 May;12(7):1179–1187. DOI:10.1261/rna.25706
  • Soutschek J, Akinc, A, and Bramlage, B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature. 2004 Nov;432(7014):173–178. DOI:10.1038/nature03121
  • Kim Y-K. RNA therapy: current status and future potential. Chonnam Med J. 2020;56(2):87.
  • Salvatori B, Biscarini S, Morlando M. Non-coding RNAs in Nervous System Development and Disease. Front Cell Dev Biol. 2020 May;8. DOI:10.3389/fcell.2020.00273
  • Latowska J, Grabowska A, Zarębska Ż, et al. Non-Coding RNAs in brain tumors, the contribution of lncRNAs, circRNAs, and snoRNAs to cancer development—their diagnostic and therapeutic potential. Int J Mol Sci. 2020 Sep;21(19):7001. DOI:10.3390/ijms21197001
  • Wu -Y-Y, Kuo H-C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J Biomed Sci. 2020 Dec;27(1):49. DOI:10.1186/s12929-020-00636-z
  • Liu X, Shen L, Han B, et al. Involvement of noncoding RNA in blood-brain barrier integrity in central nervous system disease. Non-coding RNA Res. 2021 Sep;6(3):130–138. doi: 10.1016/j.ncrna.2021.06.003
  • Dash S, Dash C, Pandhare J. Therapeutic Significance of microRNA-Mediated Regulation of PARP-1 in SARS-CoV-2 Infection. Noncoding RNA. 2021 Sep;7(4):60. DOI:10.3390/ncrna7040060
  • Baumann V, Winkler J. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem. 2014 Nov;6(17):1967–1984. DOI:10.4155/fmc.14.116
  • Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther. 2011 Dec;18(12):1104–1110. DOI:10.1038/gt.2011.50
  • Lam JKW, Chow MYT, Zhang Y, et al. siRNA Versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4:e252.
  • Liu SJ, Nowakowski, TJ, and Pollen, AA, et al. Single-cell analysis of long non-coding RNAs in the developing human neocortex. Genome Biol. 2016 Dec;17(1):67. DOI:10.1186/s13059-016-0932-1
  • Bitar M, Barry G. Multiple innovations in genetic and epigenetic mechanisms cooperate to underpin human brain evolution. Mol Biol Evol. 2018 Feb;35(2):263–268. DOI:10.1093/molbev/msx303
  • Plowman T, Lagos D. Non-Coding RNAs in COVID-19: emerging Insights and Current Questions. Noncoding RNA. 2021 Aug;7(3):54. DOI:10.3390/ncrna7030054
  • Greco S, Madè A, Gaetano C, et al. Noncoding RNAs implication in cardiovascular diseases in the COVID-19 era. J Transl Med. 2020 Dec;18(1):408. DOI:10.1186/s12967-020-02582-8
  • Yang Q, Lin F, Wang Y, et al. Long Noncoding RNAs as Emerging Regulators of COVID-19. Front Immunol. 2021 Aug;12. DOI:10.3389/fimmu.2021.700184
  • Natarelli L, Parca L, Mazza T, et al. MicroRNAs and Long Non-Coding RNAs as potential candidates to target specific motifs of SARS-CoV-2. Noncoding RNA. 2021 Feb;7(1):14. DOI:10.3390/ncrna7010014
  • Perry RB-T, Ulitsky I. Therapy based on functional RNA elements. Science. 2021 Aug;373(6555):623–624. DOI:10.1126/science.abj7969
  • Adams D, Gonzalez-Duarte, A, and O'Riordan, WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018 Jul;379(1):11–21. DOI:10.1056/NEJMoa1716153
  • Wood H. FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat Rev Neurol. 2018 Oct;14(10):570. DOI:10.1038/s41582-018-0065-0
  • Marsh J, Alifragis P. Synaptic dysfunction in Alzheimer’s disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention. Neural Regen Res. 2018;13(4):616.
  • Bužgová R, Kozáková R, Juríčková L. The unmet needs of patients with progressive neurological diseases in the czech republic: a qualitative study. J Palliat Care. 2019 Jan;34(1):38–46. DOI:10.1177/0825859718800489
  • Scavone C, Di Mauro G, Mascolo A, et al. The new paradigms in clinical research: from early access programs to the novel therapeutic approaches for unmet medical needs. Front Pharmacol. 2019 Feb;10. DOI:10.3389/fphar.2019.00111
  • Feigin VL, Vos, T, and Nichols, E, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020 Mar;19(3):255–265. DOI:10.1016/S1474-4422(19)30411-9
  • Feigin VL, Vos, T, and Alahdab, F, et al. Burden of Neurological Disorders Across the US From 1990-2017. JAMA Neurol. 2021 Feb;78(2):165. DOI:10.1001/jamaneurol.2020.4152
  • Hanna J, Hossain GS, Kocerha J. The Potential for microRNA therapeutics and clinical research. Front Genet. 2019 May;10. DOI:10.3389/fgene.2019.00478
  • DeVos SL, Miller, RL, and Schoch, KM, et al. Tau reduction prevents neuronal loss and reverses pathological tau deposition and seeding in mice with tauopathy. Sci Transl Med. 2017 Jan;9(374):0481. DOI:10.1126/scitranslmed.aag0481
  • Xia XG, Zhou H, Zhou S, et al. An RNAi strategy for treatment of amyotrophic lateral sclerosis caused by mutant Cu,Zn superoxide dismutase. J Neurochem. 2005 Jan;92(2):362–367. DOI:10.1111/j.1471-4159.2004.02860.x
  • Do Carmo Costa M, Luna-Cancalon, K, and Fischer, S, et al. Toward RNAi therapy for the polyglutamine disease machado–joseph disease. Mol Ther. 2013 Oct;21(10):1898–1908. DOI:10.1038/mt.2013.144
  • Liu Z, Li S, Liang Z, et al. Targeting β-secretase with RNAi in neural stem cells for Alzheimer’s disease therapy. Neural Regeneration Research. 2013 Nov;8(33):3095–3106. DOI:10.3969/j.issn.1673-5374.2013.33.003
  • Nóbrega C, Nascimento-Ferreira, I, and Onofre, I, et al. Silencing Mutant Ataxin-3 Rescues Motor Deficits and Neuropathology in Machado-Joseph Disease Transgenic Mice. PLoS One. 2013 Jan;8(1):e52396. DOI:10.1371/journal.pone.0052396
  • Yang H, Shang , D, and Xu, Y, et al. The LncRNA connectivity map: using LncRNA signatures to connect small molecules, LncRNAs, and diseases. Sci Rep. 2017 Dec;7(1):6655. DOI:10.1038/s41598-017-06897-3
  • Wurster CD, Ludolph AC. Antisense oligonucleotides in neurological disorders. Ther Adv Neurol Disord. 2018Jan;11:175628641877693. DOI:10.1177/1756286418776932
  • Buiting K, Williams C, Horsthemke B. Angelman syndrome — insights into a rare neurogenetic disorder. Nat Rev Neurol. 2016 Oct;12(10):584–593. DOI:10.1038/nrneurol.2016.133
  • Meng L, Ward AJ, Chun S, et al. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature. 2015 Feb;518(7539):409–412. DOI:10.1038/nature13975
  • Modarresi F, Faghihi, M, and Lopez-Toledano, M, et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol. 2012 May;30(5):453–459. DOI:10.1038/nbt.2158
  • Amodio N, Stamato, MA, and Juli, G, et al. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia. 2018 Sep;32(9):1948–1957. DOI:10.1038/s41375-018-0067-3
  • Amodio N, Raimondi, L, and Juli, G, et al. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol. 2018 Dec;11(1):63. DOI:10.1186/s13045-018-0606-4
  • Gutschner T, Hämmerle, M, and Eissmann, M, et al. The Noncoding RNA MALAT1 Is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013 Feb;73(3):1180–1189. DOI:10.1158/0008-5472.CAN-12-2850
  • Zhou Y, Shan, T, and Ding, W, et al. Study on mechanism about long noncoding RNA MALAT1 affecting pancreatic cancer by regulating Hippo‐YAP signaling. J Cell Physiol. 2018 Aug;233(8):5805–5814. DOI:10.1002/jcp.26357