7,772
Views
8
CrossRef citations to date
0
Altmetric
Review

Bioengineered microbes for soil health restoration: present status and future

, , , , &
Pages 12839-12853 | Received 15 Sep 2021, Accepted 03 Nov 2021, Published online: 14 Dec 2021

References

  • OECD, 2014. Environmental quality of life.
  • Jian J, Du X, Stewart RD. A database for global soil health assessment. Sci Data. 2020;7(1):16.
  • Samaddar S, Karp DS, Schmidt R, et al. Role of soil in the regulation of human and plant pathogens: soils’ contributions to people. Philos Trans Royal Soc B. 2021;376(1834):20200179.
  • Cardoso EJBN, Vasconcellos RLF, Bini D, et al. Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Scientia Agricola. 2013;70(4):274–289.
  • Fernandez IJ, Rustad LE, Norton SA, et al. Experimental acidification causes soil base‐cation depletion at the bear brook watershed in maine. Soil Sci Soc Am J. 2003;67(6):1909–1919.
  • Hashim G, Coughlan K, Syers J, et al. On-site nutrient depletion: an effect and a cause of soil erosion. In Penning de Vries, F W T, Agus, F, and Kerr, J M(eds)., Soil erosion at multiple scales: principles and methods for assessing causes and impacts, (New York). 1998. p. 207–221.
  • Maximillian J, Brusseau, ML, Glenn, EP, et al. Chapter 25 - pollution and environmental perturbations in the global system. In: Brusseau ML, Pepper IL, and Gerba CP, editors. Environmental and pollution science. Third. Amsterdam: Academic Press, 457–476, 2019.
  • Parikh SJ, James BR. Soil: the foundation of agriculture. Nat Educ Knowledge. 2012;3(10):2.
  • Maroun W, Atkins J. A practical application of accounting for biodiversity: the case of soil health. Social and Environmental Accountability Journal. 2021;41(1–2):37–65
  • Rejesus RM, Aglasan S, Knight LG, et al. Economic dimensions of soil health practices that sequester carbon: promising research directions. J Soil Water Conserv. 2021;76(3):55A–60A.
  • Brevik EC, Slaughter L, Singh BR, et al. Soil and human health: current status and future needs. Air Soil Water Res. 2020;13:1178622120934441.
  • Girija Veni V, Srinivasarao, C, Sammi Reddy, K, et al. Chapter 26 - Soil health and climate change. In: Prasad MNV, and Pietrzykowski M, editors. climate change and soil interactions. San Diego, California: Elsevier; 2020. p. 751–767.
  • Bunea A, Pacurar, I, Dulf, V et al, Study concerning the soil resources used in agriculture and forestry worldwide . ProEnvironment. 2020: 13; 39–43.
  • Macdonald C, Singh B. Harnessing plant-microbe interactions for enhancing farm productivity. Bioengineered. 2014;5(1):5–9.
  • Hernandez‐Raquet G, Durand E, Braun F, et al. Impact of microbial diversity depletion on xenobiotic degradation by sewage‐activated sludge. Environ Microbiol Rep. 2013;5(4):588–594.
  • Bharadwaj A Bioremediation of xenobiotics: an eco-friendly cleanup approach. In Parmar, V S, Malhotra, P, and Mathur, D(eds).,: Green chemistry in environmental sustainability and chemical education. Singapore: Springer; 2018. p. 1–13.
  • Rebello S, Sivaprasad MS, Anoopkumar AN, et al. Cleaner technologies to combat heavy metal toxicity. J Environ Manage. 2021;296:113231 doi:10.1016/j.jenvman.2021.113231.
  • Rashid MI, Mujawar LH, Shahzad T, et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res. 2016;183:26–41.
  • Rishad KS, Rebello S, Shabanamol PS, et al. Biocontrol potential of Halotolerant bacterial chitinase from high yielding novel Bacillus Pumilus MCB-7 autochthonous to mangrove ecosystem. Pestic Biochem Physiol. 2017;137:36–41.
  • Nair AM, Rebello S, Rishad KS, et al. Biosurfactant facilitated biodegradation of quinalphos at high concentrations by Pseudomonas aeruginosa Q10. Soil Sediment Contaminat. 2015;24(5):542–553.
  • Gunjal AB Role of plant growth–promoting rhizobacteria in degradation of xenobiotic compounds. In Verma, J P, Macdonald, C A, and Podile, A R. (eds)., New and future developments in microbial biotechnology and bioengineering. Amsterdam: Elsevier; 2021. p. 25–33.
  • Cf SF, Rebello S, Mathachan Aneesh E, et al. Bioprospecting of gut microflora for plastic biodegradation. Bioengineered. 2021;12(1):1040–1053.
  • Mishra S, Lin, Z, Pang, S, et al. Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front Bioeng Biotechnol. 2021;9(31);1–26.
  • Docherty KM, Gutknecht JLM. Soil microbial restoration strategies for promoting climate-ready prairie ecosystems. Ecol Appl. 2019;29(3):e01858.
  • Tejada M, Benítez C, Parrado J. Application of biostimulants in benzo (a) pyrene polluted soils: short-time effects on soil biochemical properties. Appl Soil Ecol. 2011;50:21–26.
  • Finkel OM, Castrillo G, Herrera Paredes S, et al. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol. 2017;38:155–163.
  • Lakshmanan V, Selvaraj G, Bais HP. Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol. 2014;166(2):689–700.
  • Kumar A, Dubey A. Rhizosphere microbiome: engineering bacterial competitiveness for enhancing crop production. J Adv Res. 2020;24:337–352.
  • Lyu D, Msimbira LA, Nazari M, et al. The coevolution of plants and microbes underpins sustainable agriculture. Microorganisms. 2021;9(5):1036.
  • Ke W, Zhang X, Zhu F, et al. Appropriate human intervention stimulates the development of microbial communities and soil formation at a long-term weathered bauxite residue disposal area. J Hazard Mater. 2021;405:124689.
  • Basu S, Kumar , G, Chhabra, S et al, et al. Role of soil microbes in biogeochemical cycle for enhancing soil fertility. In Verma, J P, Macdonald, C A, and Podille, A R(eds)., New and future developments in microbial biotechnology and bioengineering. Amsterdam: Elsevier, 2021. 149–157.
  • Nehal N, Rathore US, Sharma N Microbes and soil health for sustainable crop production. In Nath, Manoj, Bhatt, Deepesh, Bhargava, Prachi, and D.K., Choudhary(eds)., Microbial metatranscriptomics belowground, 1 . Switzerland: Springer. 2021. p. 581–613.
  • Rogers C, Oldroyd GE. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp Bot. 2014;65(8):1939–1946.
  • Ryu M-H, Zhang J, Toth T, et al. Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol. 2020;5(2):314–330.
  • Wu Q, Jiao S, Ma M, et al. Microbial fuel cell system: a promising technology for pollutant removal and environmental remediation. Environ Sci Pollut Res. 2020;27(7):6749–6764.
  • Bhalerao TS, Puranik PR. Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus Niger. Int Biodeterior Biodegrad. 2007;59(4):315–321.
  • Malghani S, Chatterjee N, Yu HX, et al. Isolation and identification of profenofos degrading bacteria. Braz J Microbiol. 2009;40(4):893–900.
  • Zhang X, Hao X, Huo S, et al. Isolation and identification of the Raoultella ornithinolytica-ZK4 degrading pyrethroid pesticides within soil sediment from an abandoned pesticide plant. Arch Microbiol. 2019;201(9):1207–1217.
  • Kumari S, Mangwani N, Das S. Synergistic effect of quorum sensing genes in biofilm development and PAHs degradation by a marine bacterium. Bioengineered. 2016;7(3):205–211.
  • Rebello S, Asok AK, Mundayoor S, et al. Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett. 2014;12(2):275–287.
  • Liu X, Germaine KJ, Ryan D, et al. Genetically modified Pseudomonas biosensing biodegraders to detect PCB and chlorobenzoate bioavailability and biodegradation in contaminated soils. Bioengineered Bugs. 2010;1(3):198–206.
  • Vandana UK, Gulzar, A, Laskar, IH, et al. Role of microbes in bioremediation of radioactive waste. In Panpatte, D G, and Jhala, Y K(eds)., Microbial rejuvenation of polluted environment. Singapore: Springer, 2021. 329–352.
  • Rebello S, Anoopkumar AN, Aneesh EM, et al. Hazardous minerals mining: challenges and solutions. J Hazard Mater. 2021;402:123474.
  • Furukawa K. ‘Super bugs’ for bioremediation. Trends Biotechnol. 2003;21(5):187–190.
  • Ortiz-hernández M, Sánchez-Salinas E. Biodegradation of the organophosphate pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in México. Revista internacional de contaminación ambiental. 2010;26(1):27–38.
  • Li J, Wu C, Chen S, et al. Enriching indigenous microbial consortia as a promising strategy for xenobiotics’ cleanup. J Clean Prod. 2020;261:121234.
  • Qin Y, Druzhinina IS, Pan X, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv. 2016;34(7):1245–1259.
  • Estrada B, Aroca R, Azcón-Aguilar C, et al. Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions. Plant Soil. 2013;370(1):175–185.
  • Armada E, Portela G, Roldán A, et al. Combined use of beneficial soil microorganism and agrowaste residue to cope with plant water limitation under semiarid conditions. Geoderma. 2014;232:640–648.
  • Rani R, Kumar V, Usmani Z, et al. Influence of plant growth promoting rhizobacterial strains Paenibacillus sp. IITISM08, Bacillus sp. PRB77 and Bacillus sp. PRB101 using Helianthus annuus on degradation of endosulfan from contaminated soil. Chemosphere. 2019;225:479–489.
  • Sundari SK, Prakash, A, Yadav, P, et al. Plant growth-promoting microbes as front-runners for on-site remediation of organophosphate pesticide residues in agriculture soils. In Arora, N K, and Kumar, N, Phyto and rhizo remediation. Singapore: Springer, 2019. 249–285.
  • DalCorso G, Fasani E, Manara A, et al. Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci. 2019;20(14):3412.
  • Nathiya S, Janani R, Kannan VR. Potential of plant growth promoting Rhizobacteria to overcome the exposure of pesticide in Trigonella foenum-graecum (fenugreek leaves). Biocatal Agric Biotechnol. 2020;23:101493.
  • Verbruggen E, Van Der HEIJDEN MARCELGA, Weedon JT, et al. Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol. 2012;21(10):2341–2353.
  • Nemergut DR, Schmidt SK, Fukami T, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77(3):342–356.
  • Cordero OX, Polz MF. Explaining microbial genomic diversity in light of evolutionary ecology. Nature Rev Microbiol. 2014;12(4):263–273.
  • Bello-Akinosho M, Makofane R, Adeleke R, et al. Potential of polycyclic aromatic hydrocarbon-degrading bacterial isolates to contribute to soil fertility. Biomed Res Int. 2016;2016:1–10.
  • Rebello S, Joseph BV, Joseph SV, et al. Bioconversion of sodium dodecyl sulphate to rhamnolipids by transformed Escherichia coli DH5 α cells-a novel strategy for rhamnolipid synthesis. J Appl Microbiol. 2016;120(3):638–646.
  • Begum N, Qin C, Ahanger MA, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci. 2019;10(1068). DOI:10.3389/fpls.2019.01068.
  • Jan S, Singh R, Bhardwaj R, et al. Plant growth regulators: a sustainable approach to combat pesticide toxicity. 3 Biotech. 2020;10(11):466.
  • Verma P, Rawat S Rhizoremediation of heavy metal-and xenobiotic-contaminated soil: an eco-friendly approach. In Shah, M P, Removal of emerging contaminants through microbial processes. Singapore: Springer; 2021. p. 95–113.
  • Parewa HP, Meena, VS, Jain, LK, et al. Sustainable crop production and soil health management through plant growth-promoting rhizobacteria. In Meena, V J., Role of rhizospheric microbes in soil. Singapore: Springer, 2018. 299–329.
  • Kumar G, Patel, JS, Maharshi, A, et al. 25 PGPR-mediated defence responses in plants under biotic and abiotic stresses. Advances in PGPR research. 2017; 427
  • Hou J, Liu W, Wang B, et al. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere. 2015;138:592–598.
  • Robas M, Jiménez PA, González D et al. Bio-mercury remediation suitability index: a novel proposal that compiles the PGPR features of bacterial strains and its potential use in phytoremediation. Int J Environ Res Public Health. 2021;18(8):4213.
  • Asad SA Soil–PCB–PGPR interactions in changing climate scenarios. In Hashmi, M Z, Kumar, V, and Varma, A (eds)., Xenobiotics in the Soil Environment. Switzerland: Springer; 2017. p. 281–298.
  • Turan M, Hashmi, M Z, Kumar, V, and Varma, A . Plant Growth Promoting Rhizobacteria’s (PGPRS) enzyme dynamics in soil remediation. In Larramendy, M L, and Soloneski, S (eds)., Soil contamination-current consequences and further solutions. Croatia: IntechOpen; 2016:209–231.
  • Kaur J Kumar, Vivek, Prasad, Ram, and Kumar, Manoj. PGPR in management of soil toxicity. Rhizobiont in bioremediation of hazardous waste. Singapore: Springer; 2021. p. 317–344.
  • Ajeng AA, Abdullah R, Malek MA, et al. The effects of biofertilizers on growth, soil fertility, and nutrients uptake of oil palm (Elaeis guineensis) under greenhouse conditions. Processes. 2020;8(12):1681.
  • Chia WY, Chew KW, Le CF, et al. Sustainable utilization of biowaste compost for renewable energy and soil amendments. Environ Pollut. 2020;267:115662.
  • Yuanfan H, Jin Z, Qing H, et al. Characterization of a fenpropathrin-degrading strain and construction of a genetically engineered microorganism for simultaneous degradation of methyl parathion and fenpropathrin. J Environ Manage. 2010;91(11):2295–2300.
  • Kumar NM, Muthukumaran C, Sharmila G, et al. Genetically modified organisms and its impact on the enhancement of bioremediation. In Varjani, S J, Agarwal, A K, Gnansounou, E, and Gurunathan, B (eds)., Bioremediation, in bioremediation: applications for environmental protection and management. Singapore: Springer; 2018:53–76.
  • Pant G, Garlapati D, Agrawal U, et al. Biological approaches practised using genetically engineered microbes for a sustainable environment: a review. J Hazard Mater. 2021;405:124631.
  • Diep P, Mahadevan R, Yakunin AF. Heavy metal removal by bioaccumulation using genetically engineered microorganisms. Front Bioeng Biotechnol. 2018;6:157.
  • Li C, Li Z, Li Y, et al. A Ferritin from Dendrorhynchus zhejiangensis with heavy metals detoxification activity. PLOS ONE. 2012;7(12):e51428.
  • Misra CS, Sounderajan S, Apte SK. Metal removal by metallothionein and an acid phosphatase PhoN, surface-displayed on the cells of the extremophile, Deinococcus radiodurans. J Hazard Mater. 2021;419:126477.
  • Ma L, Xu J, Chen N, et al. Microbial reduction fate of chromium (Cr) in aqueous solution by mixed bacterial consortium. Ecotoxicol Environ Saf. 2019;170:763–770.
  • Mahbub KR, Krishnan K, Megharaj M, et al. Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere. 2016;144:330–337.
  • Wang P, Sun G, Jia Y, et al. A review on completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment. J Environ Sci. 2014;26(2):371–381.
  • Neumann G, Teras R, Monson L, et al. Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain adp: effects of toxicity and adaptation. Appl Environ Microbiol. 2004;70(4):1907–1912.
  • Strong LC, McTavish H, Sadowsky MJ, et al. Field‐scale remediation of atrazine‐contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol. 2000;2(1):91–98.
  • Zhang R, Cui Z, Zhang X, et al. Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation. 2006;17(5):465–472.
  • Zhongli C, Shunpeng L, Guoping F. Isolation of methyl parathion-degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol. 2001;67(10):4922–4925.
  • Lu J, Guo C, Li J, et al. A fusant of Sphingomonas sp. GY2B and Pseudomonas sp. GP3A with high capacity of degrading phenanthrene. World J Microbiol Biotechnol. 2013;29(9):1685–1694.
  • Yang J, Liu R, Song W, et al. Construction of a genetically engineered microorganism that simultaneously degrades organochlorine and organophosphate pesticides. Appl Biochem Biotechnol. 2012;166(3):590–598.
  • Dillon AJP, Camassola M, Henriques JAP, et al. Generation of recombinants strains to cellulases production by protoplast fusion between Penicillium echinulatum and Trichoderma harzianum. Enzyme Microb Technol. 2008;43(6):403–409.
  • Kang DG, Choi SS, Cha HJ. Enhanced biodegradation of toxic organophosphate compounds using recombinant Escherichia coli with sec pathway‐driven periplasmic secretion of organophosphorus hydrolase. Biotechnol Prog. 2006;22(2):406–410.
  • Carpenter A. Oil pollution in the North Sea: the impact of governance measures on oil pollution over several decades. Hydrobiologia. 2019;845(1):109–127.
  • Ndimele PE. The political ecology of oil and gas activities in the Nigerian aquatic ecosystem. London, UK: Academic Press; 2017.
  • Zheng C, Yu L, Huang L, et al. Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. J Pet Sci Eng. 2012;81:49–56.
  • Ismail S, Dadrasnia A. Biotechnological potential of Bacillus salmalaya 139SI: a novel strain for remediating water polluted with crude oil waste. PLoS One. 2015;10(4):e0120931.
  • Mishra S, Sarma PM, Lal B. Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil-contaminated soil microcosm. FEMS Microbiol Lett. 2004;235(2):323–331.
  • Gallo G, Lo Piccolo L, Renzone G, et al. Differential proteomic analysis of an engineered Streptomyces coelicolor strain reveals metabolic pathways supporting growth on n-hexadecane. Appl Microbiol Biotechnol. 2012;94(5):1289–1301.
  • Xie Y, Yu F, Wang Q, et al. Cloning of catechol 2, 3-dioxygenase gene and construction of a stable genetically engineered strain for degrading crude oil. Indian J Microbiol. 2014;54(1):59–64.
  • Parrilli E, Papa R, Tutino ML, et al. Engineering of a psychrophilic bacterium for the bioremediation of aromatic compounds. Bioengineered Bugs. 2010;1(3):213–216.
  • Zhao Q, Yue S, Bilal M, et al. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer. SciTotal Environ. 2017;609:1238–1247.
  • Hu N-J, Huang P, Liu J-H, et al. Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments in the Yellow River Estuary, China. Environ Earth Sci. 2014;71(2):873–883.
  • Nguyen TC, Loganathan P, Nguyen TV, et al. Polycyclic aromatic hydrocarbons in road-deposited sediments, water sediments, and soils in Sydney, Australia: comparisons of concentration distribution, sources and potential toxicity. Ecotoxicol Environ Saf. 2014;104:339–348.
  • Aylward FO, McDonald BR, Adams SM, et al. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol. 2013;79(12):3724–3733.
  • Sandoval Á, Arias-Barrau E, Bermejo F, et al. Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida. Appl Microbiol Biotechnol. 2005;67(1):97–105.
  • Hart MM, Antunes PM, Abbott LK. Unknown risks to soil biodiversity from commercial fungal inoculants. Nat Ecol Evol. 2017;1(4):1.
  • Hart MM, Antunes PM, Chaudhary VB, et al. Fungal inoculants in the field: is the reward greater than the risk? Funct Ecol. 2018;32(1):126–135.
  • Dechesne A, Pallud C, Bertolla F, et al. Impact of the microscale distribution of a Pseudomonas strain introduced into soil on potential contacts with indigenous bacteria. Appl Environ Microbiol. 2005;71(12):8123–8131.
  • Hernández-Sánchez V, Wittich R-M. Possible reasons for past failures of genetic engineering techniques for creating novel, xenobiotics-degrading bacteria. Bioengineered. 2012;3(5):260–261.
  • Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. science. 2010;329(5987):52–56.
  • Sanchez-Romero JM, Diaz-Orejas R, De Lorenzo V. Resistance to tellurite as a selection marker for genetic manipulations of Pseudomonas strains. Appl Environ Microbiol. 1998;64(10):4040–4046.
  • Herrero M, De Lorenzo V, Timmis KN. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol. 1990;172(11):6557–6567.
  • French KE, Zhou Z, Terry N. Horizontal ‘gene drives’ harness indigenous bacteria for bioremediation. Sci Rep. 2020;10(1):15091.
  • Dejonghe W, Goris J, El Fantroussi S, et al. Effect of dissemination of 2, 4-dichlorophenoxyacetic acid (2, 4-D) degradation plasmids on 2, 4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol. 2000;66(8):3297–3304.
  • Min MG, Kawabata Z, Ishii N, et al. Fate of a PCBS degrading recombinant pseudomonas putida AC30(PMFB2) and its effect on the densities of microbes in marine microcosms contaminated with PCBS. Int J Environ Stud. 1998;55(4):271–285.
  • Pandey G, Paul D, Jain RK. Conceptualizing “suicidal genetically engineered microorganisms” for bioremediation applications. Biochem Biophys Res Commun. 2005;327(3):637–639.
  • Paul D, Pandey G, Jain RK. Suicidal genetically engineered microorganisms for bioremediation: need and perspectives. Bioessays. 2005;27(5):563–573.
  • Singh A, Billingsley K, Ward O. Composting: a potentially safe process for disposal of genetically modified organisms. Crit Rev Biotechnol. 2006;26(1):1–16.
  • Amarger N. Genetically modified bacteria in agriculture. Biochimie. 2002;84(11):1061–1072.
  • Viebahn M, Glandorf DCM, Ouwens TWM, et al. Repeated introduction of genetically modified pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat. Appl Environ Microbiol. 2003;69(6):3110–3118.
  • Johansen A, Olsson S. Using phospholipid fatty acid technique to study short-term effects of the biological control agent Pseudomonas fluorescens DR54 on the microbial microbiota in barley rhizosphere. Microb Ecol. 2005;49(2):272–281.
  • De Cárcer DA, Martín M, Mackova M, et al. The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME J. 2007;1(3):215–223.
  • Schweitzer JA, Bailey JK, Fischer DG, et al. Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology. 2008;89(3):773–781.
  • Panke-Buisse K, Poole AC, Goodrich JK, et al. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 2015;9(4):980–989.
  • Mueller UG, Sachs JL. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 2015;23(10):606–617.
  • Sergaki C, Lagunas B, Lidbury I, et al. Challenges and approaches in microbiome research: from fundamental to applied. Front Plant Sci. 2018;9:1205.
  • Banerjee S, Schlaeppi K, van der Heijden MG. Keystone taxa as drivers of microbiome structure and functioning. Nature Rev Microbiol. 2018;16(9):567–576.
  • Ray P, Lakshmanan V, Labbé JL, et al. Microbe to microbiome: a paradigm shift in the application of microorganisms for sustainable agriculture. Front Microbiol. 2020;11:3323.
  • Saxena P, Singh, NK, Harish,et al. 5 - Recent advances in phytoremediation using genome engineering CRISPR–Cas9 technology. In: Pandey VC, and Singh V, editors. Bioremediation of pollutants. Amsterdam: Elsevier; 2020. p. 125–141.
  • Stein HP, Navajas-Pérez R, Aranda E, et al. Potential for CRISPR genetic engineering to increase xenobiotic degradation capacities in model fungi. In Prasad, Ram: Approaches in bioremediation. Switzerland: Springer; 2018. p. 61–78.
  • Jaiswal S, Singh DK, Shukla P. Gene editing and systems biology tools for pesticide bioremediation: a review. Front Microbiol. 2019;10:87.
  • Allouzi MMA, Tang DYY, Chew KW, et al. Micro (nano) plastic pollution: the ecological influence on soil-plant system and human health. SciTotal Environ. 2021;788:147815.
  • Liu C, Lin H, Dong Y, et al. Identification and characterization of plant growth–promoting endophyte RE02 from Trifolium repens L. in mining smelter. Environ Sci Pollut Res. 2019;26(17):17236–17247.
  • Ke T, Zhang J, Tao Y, et al. Individual and combined application of Cu-tolerant Bacillus spp. enhance the Cu phytoextraction efficiency of perennial ryegrass. Chemosphere. 2021;263:127952.
  • He X, Xu M, Wei Q, et al. Promotion of growth and phytoextraction of cadmium and lead in Solanum nigrum L. mediated by plant-growth-promoting rhizobacteria. Ecotoxicol Environ Saf. 2020;205:111333.
  • Abdelkrim S, Jebara SH, Saadani O, et al. In situ effects of Lathyrus sativus-PGPR to remediate and restore quality and fertility of Pb and Cd polluted soils. Ecotoxicol Environ Saf. 2020;192:110260.
  • Tirry N, Kouchou A, El Omari B, et al. Improved chromium tolerance of Medicago sativa by plant growth-promoting rhizobacteria (PGPR). J Genet Eng Biotechnol. 2021;19(1):1–14.
  • Jeyasundar PGSA, Ali A, Azeem M, et al. Green remediation of toxic metals contaminated mining soil using bacterial consortium and Brassica juncea. Environ Pollut. 2021;277:116789.
  • Xu Z, Lei Y, Patel J. Bioremediation of soluble heavy metals with recombinant Caulobacter crescentus. Bioengineered Bugs. 2010;1(3):207–212.
  • Kou S, Yang Z, Luo J, et al. Entirely recombinant protein-based hydrogels for selective heavy metal sequestration. Polym Chem. 2017;8(39):6158–6164.
  • Si K, Ming T, Li Y, et al. Heavy metal detoxification by recombinant ferritin from Apostichopus japonicus. RSC Adv. 2017;7(66):41909–41918.
  • Pazirandeh M, Chrisey LA, Mauro JM, et al. Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake. Appl Microbiol Biotechnol. 1995;43(6):1112–1117.
  • Sauge-Merle S, Lecomte-Pradines C, Carrier P, et al. Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure. Chemosphere. 2012;88(8):918–924.
  • Bai F, Tian H. Recombinant Rhodococcus erythropolis expressing HAO and AMO genes promotes nitrogen and organic matter removal efficiency in the treatment of landfill leachate. Water and Environment Journal. 2021. doi:10.1111/wej.12743.