1,984
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Isoliquiritigenin attenuates acute renal injury through suppressing oxidative stress, fibrosis and JAK2/STAT3 pathway in streptozotocin-induced diabetic rats

, , &
Pages 11188-11200 | Received 15 Oct 2021, Accepted 12 Nov 2021, Published online: 30 Nov 2021

References

  • Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab. 2008;4(8):444–452.
  • Lehmann R, Schleicher ED. Molecular mechanism of diabetic nephropathy. Clin Chim Acta. 2000;297(1–2):135–144.
  • Jung K, Pergande M, Schimke E, et al. Urinary enzymes and low-molecular-mass proteins as indicators of diabetic nephropathy. Clin Chem. 2019;34:3.
  • Gross JL, de Azevedo MJ, Silveiro SP, et al. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care. 2005;28(1):164–176.
  • Zhu L, Han J, Yuan R, et al. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol Res. 2018;51(1):9.
  • Fujita H, Morii T, Fujishima H, et al. The protective roles of GLP-1R signaling in diabetic nephropathy: possible mechanism and therapeutic potential. Kidney Int. 2014;85(3):579–589.
  • Elsherbiny NM, Al-Gayyar MMH, Abd KH. Nephroprotective role of dipyridamole in diabetic nephropathy: effect on inflammation and apoptosis. Life Sci. 2015;143:8–17.
  • Boss M, Deden L, Brom M, et al. receptor expression in the pathophysiology of type 2 diabetes. Nuklearmedizin. 2019;58:163.
  • Cooper M, Boner G. Dual blockade of the renin–angiotensin system in diabetic nephropathy. Diabetes Care. 2009;21:S410–S413.
  • Huang Y, Zhou Q, Haaijer-Ruskamp FM, et al. Economic evaluations of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in type 2 diabetic nephropathy: a systematic review. BMC Nephrol. 2014;15(1):15.
  • Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375(4):323–334.
  • Liu Y. Renal fibrosis: new insights into the pathogenesis and therapeutics. Kidney Int. 2006;69(2):213–217.
  • Nam-Jun C, Dong-Jae H, Ji-Hye L, et al. Soluble klotho as a marker of renal fibrosis and podocyte injuries in human kidneys. PLoS One. 2018;13(3):e0194617.
  • Wolf G, Ziyadeh FN. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol. 2007;106(2):26–31.
  • Imamura S, Hirai K, Hirai A. The Glucagon-Like peptide-1 receptor agonist, liraglutide, attenuates the progression of overt diabetic nephropathy in type 2 diabetic patients. The Tohoku Journal of Experimental Medicine. 2013;231(1):57–61.
  • Liu DL, Ma ST. Progress of pharmacological actions of total glucosides of paeony in treating diabetic nephropathy. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2013;33(8):1143–1146.
  • MacIsaac RJ, Jerums G, Ekinci EI. Effects of glycaemic management on diabetic kidney disease. World J Diabetes. 2017;8(5):172–186.
  • Zhang X-G, Zhang Y-Q, Cheng Q-P, et al. The impact of insulin pump therapy to oxidative stress in patients with diabetic nephropathy. Eur J Med Res. 2018;23(1):7.
  • Gu X, Shi Y, Chen X, et al. Isoliquiritigenin attenuates diabetic cardiomyopathy via inhibition of hyperglycemia-induced inflammatory response and oxidative stress. Phytomedicine. 2020;78:153319.
  • Wang L-J, He L, Hao L, et al. Isoliquiritigenin ameliorates caerulein-induced chronic pancreatitis by inhibiting the activation of PSCs and pancreatic infiltration of macrophages. J Cell Mol Med. 2020;24(17):9667–9681.
  • Park SM, Lee JR, Ku SK, et al. Isoliquiritigenin in licorice functions as a hepatic protectant by induction of antioxidant genes through extracellular signal-regulated kinase-mediated NF-E2-related factor-2 signaling pathway. Eur J Nutr. 2016;55:2431–2444.
  • Lee SH, Kim JY, Seo GS, et al. Isoliquiritigenin, from Dalbergia odorifera, up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages. Inflamm Res. 2009;58(5):257–262.
  • Tawata M, Aida K, Noguchi T, et al. Anti-platelet action of isoliquiritigenin, an aldose reductase inhibitor in licorice. Eur J Pharmacol. 1992;212(1):87–92.
  • Kumar S, Sharma A, Madan B, et al. Isoliquiritigenin inhibits IκB kinase activity and ROS generation to block TNF-α induced expression of cell adhesion molecules on human endothelial cells. Biochem Pharmacol. 2007;73(10):1602–1612.
  • Yushan R, Ying Y, Yujun T, et al. Isoliquiritigenin inhibits mouse S180 tumors with a new mechanism that regulates autophagy by GSK-3β/TNF-α pathway. European Journal of Pharmacology. 2018;838:11–22.
  • A.D. Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(1):S62.
  • Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med. 2011;50(5):567–575.
  • Xu Y. Prevalence and control of diabetes in Chinese adults. Jama. 2013;310(9):948.
  • Kishimoto A, Sasaki H, Ibata J, et al. Risk factors of development and progression of chronic diabetic complications - An investigation in long-term cases. J Jap Diab Soc. 2008;51:109–115.
  • Bounthavong M, Law AV. Identifying health-related quality of life (HRQL) domains for multiple chronic conditions (diabetes, hypertension and dyslipidemia): patient and provider perspectives. J Eval Clin Pract. 2008;14(6):1002–1011.
  • Rask-Madsen C, George L. King, vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013;17(1):20–33.
  • Kumar N, Hazarika K, Talwar AS. Antidiabetic drug use in chronic kidney disease. Ind J Health Sci Care. 2015;2(2):127–134.
  • Thomas MC, Brownlee M, Susztak K, et al. Diabetic kidney disease. Clin J Am Soc Nephrol Cjasn. 2015;13:335–338.
  • Ahmad R. Microalbuminuria: a urinary biomarker of diabetic kidney disease. J Islamabad Med Dent Coll. 2017;6:56–57.
  • Balakumar P, Arora MK, Reddy J, et al. Pathophysiology of diabetic nephropathy: Involvement of multifaceted signalling mechanism. J Cardiovasc Pharmacol. 2009;54(2):129–138.
  • Shin EM, Zhou HY, Guo LY, et al. Anti-inflammatory effects of glycyrol isolated from Glycyrrhiza uralensis in LPS-stimulated RAW264.7 macrophages. Int Immunopharmacol. 2008;8(11):1524–1532.
  • Yang Y-N, Liu -Y-Y, Feng Z-M, et al. Seven new flavonoid glycosides from the roots of Glycyrrhiza uralensis and their biological activities. Carbohydr Res. 2019;485:107820.
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circul Res. 2010;107(9):1058–1070.
  • Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–410.