5,183
Views
17
CrossRef citations to date
0
Altmetric
Review

Bacterial nanocellulose: engineering, production, and applications

, , , , , , , & ORCID Icon show all
Pages 11463-11483 | Received 21 Oct 2021, Accepted 18 Nov 2021, Published online: 02 Dec 2021

References

  • Gilmore SP, Henske JK, O’Malley MA. Driving biomass breakdown through engineered cellulosomes. Bioengineered. 2015;6:204–208.
  • Kumar M, You S, Beiyuan J, et al. Lignin valorization by bacterial genus Pseudomonas: state-of-the-art review and prospects. Bioresour Technol. 2021;320:124412.
  • Sharma C, Bhardwaj NK. Bacterial nanocellulose: present status, biomedical applications and future perspectives. Mater Sci Eng C. 2019;104:109963.
  • Numata Y, Sakata T, Furukawa H, et al. Bacterial cellulose gels with high mechanical strength. Mater Sci Eng C. 2015;47:57–62.
  • Khosravi-Darani K, Koller M, Akramzadeh N, et al. Bacterial nanocellulose: biosynthesis and medical application. Biointerface Res Appl Chem. 2016;6:1511–1516.
  • de Amorim JDP, de Souza KC, Duarte CR, et al. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ Chem Lett. 2020;18:851–869.
  • Barja F. Bacterial nanocellulose production and biomedical applications. J Biomed Res. 2021;35:310–317.
  • Shavyrkina NA, Budaeva VV, Skiba EA, et al. Scale-up of biosynthesis process of bacterial nanocellulose. Polymers (Basel). 2021;13:1–12.
  • Kralisch D, Hessler N, Klemm D, et al. White biotechnology for cellulose manufacturing - The HoLiR concept. Biotechnol Bioeng. 2010;105:740–747.
  • Nimeskern L, Héctor M, Sundberg J, et al. Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater. 2013;22:1–39.
  • Wu T, Farnood R, O’Kelly K, et al. Mechanical behavior of transparent nanofibrillar cellulose-chitosan nanocomposite films in dry and wet conditions. J Mech Behav Biomed Mater. 2014;32:279–286.
  • Tusnim J, Hoque E, Hossain SA, et al. Nanocellulose and nanohydrogels for the development of cleaner energy and future sustainable materials. INC. 2020. DOI:10.1016/B978-0-12-816789-2.00004-3
  • Steinbuchel A. Plastics from bacteria: natural functions and applications. 2010.
  • Jawaid M, Kumar S. Bionanocomposites for packaging applications. Switzerland (AG): Springer Nature; 2018.
  • Bacakova L, Pajorova J, Bacakova M, et al. Versatile application of nanocellulose: from industry to skin tissue engineering and wound healing. Nanomater. 2019;9:164–183.
  • Rajwade JM, Paknikar KM, Kumbhar JV. Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol. 2015;5:1–21.
  • Alizadeh-Osgouei M, Li Y, Wen C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater. 2019;4:22–36.
  • Weng L, Rostamzadeh P, Nooryshokry N, et al. In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomater. 2013;9:6823–6833.
  • Brown AJ. On an acetic ferment which forms cellulose. J Chem Soc Trans. 1886;49:432–439.
  • Castro C, Cordeiro N, Faria M, et al. In-situ glyoxalization during biosynthesis of bacterial cellulose. Carbohydr Polym. 2015;126:32–39.
  • Römling U, Galperin MY. Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol. 2015;23:545–557.
  • Moradi M, Jacek P, Farhangfar A, et al. The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: a review. Int J Biol Macromol. 2021;183:635–650.
  • Gromet Z, Schramm M, Hestrin S. Synthesis of cellulose by Acetobacter Xylinum Enzyme systems present in a crude extract of glucose-grown cells. Biochem J. 1957;67:679–689.
  • Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in bacteria. Microbiol Rev. 1991;55:35–58.
  • Ross P, Weinhouse H, Aloni Y, et al. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. 1987;325:279–281.
  • Morgan JLW, Strumillo J, Zimmer J. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature. 2013;493:181–186.
  • Saxena IM, Kudlicka K, Okuda K, et al. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol. 1994;176:5735–5752.
  • Wong HC, Fear AL, Calhoon RD, et al. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci U S A. 1990;87:8130–8134.
  • Singhania RR, Patel AK, Tsai M-L, et al. Genetic modification for enhancing bacterial cellulose production and its applications. Bioengineered. 2021;12:6793–6807.
  • Chen G, Chen L, Wang W, et al. Improved bacterial nanocellulose production from glucose without the loss of quality by evaluating thirteen agitator configurations at low speed. Microb Biotechnol. 2019;12:1387–1402.
  • Yadav V, Paniliatis BJ, Shi H, et al. Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl Environ Microbiol. 2010;76:6257–6265.
  • Battad-Bernardo E, McCrindle SL, Couperwhite I, et al. Insertion of an E. coli lacZ gene in Acetobacter xylinus for the production of cellulose in whey. FEMS Microbiol Lett. 2004;231:253–260.
  • Mangayil R, Rajala S, Pammo A, et al. Engineering and characterization of bacterial nanocellulose films as low cost and flexible sensor material. ACS Appl Mater Interfaces. 2017;9:19048–19056.
  • Kuo CH, Teng HY, Lee CK. Knock-out of glucose dehydrogenase gene in Gluconacetobacter xylinus for bacterial cellulose production enhancement. Biotechnol Bioprocess Eng. 2015;20:18–25.
  • Edwards KJ, Jay AJ, Colquhoun IJ, et al. Generation of a novel polysaccharide by inactivation of the aceP gene from the acetan biosynthetic pathway in Acetobacter xylinum. Microbiology. 1999;145:1499–1506.
  • Mehta K, Pfeffer S, Brown RM. Characterization of an acsD disruption mutant provides additional evidence for the hierarchical cell-directed self-assembly of cellulose in Gluconacetobacter xylinus. Cellulose. 2015;22:119–137.
  • Bae SO, Sugano Y, Ohi K, et al. Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001. Appl Microbiol Biotechnol. 2004;65:315–322.
  • Ishida T, Sugano Y, Nakai T, et al. Effects of acetan on production of bacterial cellulose by Acetobacte xylinum. Biosci Biotechnol Biochem. 2002;66:1677–1681.
  • Shigematsu T, Takamine K, Kitazato M, et al. Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng. 2005;99:415–422.
  • Kawano S, Tajima K, Kono H, et al. Effects of endogenous endo-β-1,4-glucanase on cellulose biosynthesis in Acetobacter xylinum ATCC23769. J Biosci Bioeng. 2002;94:275–281.
  • Nakai T, Sugano Y, Shoda M, et al. Formation of highly twisted ribbons in a carboxymethylcellulase gene-disrupted strain of a cellulose-producing bacterium. J Bacteriol. 2013;195:958–964.
  • Schramm M, Hestrin S. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol. 1954;11:123–129.
  • Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, et al. Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol. 2002;29:189–195.
  • Valla S, Coucheron DH, Kjosbakken J. Acetobacter xylinum contains several plasmids: evidence for their involvement in cellulose formation. Arch Microbiol. 1983;134:9–11.
  • Coucheron DH. An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production. J Bacteriol. 1991;173:5723–5731.
  • Siguier P, Gourbeyre E, Chandler M. Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiol Rev. 2014;38:865–891.
  • Krystynowicz A, Koziołkiewicz M, Wiktorowska-Jezierska A, et al. Molecular basis of cellulose biosynthesis disappearance in submerged culture of Acetobacter xylinum. Acta Biochim Pol. 2005;52:691–698.
  • Jozala AF, de Lencastre-novaes LC, Lopes AM, et al. Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol. 2016;100:2063–2072.
  • Pourramezan GZ, Roayaei AM, Qezelbash QR. Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2. Biotechnology. 2009;8:150–154.
  • Koizumi S, Yue Z, Tomita Y, et al. Bacterium organizes hierarchical amorphous structure in microbial cellulose. Eur Phys J E. 2008;26:137–142. Springer.
  • Wang J, Tavakoli J, Tang Y. Bacterial cellulose production, properties and applications with different culture methods – a review. Carbohydr Polym. 2019;219:63–76.
  • Jacek P, Silva FAGSD, Dourado F, et al. Optimization and characterization of bacterial nanocellulose produced by Komagataeibacter rhaeticus K3. Carbohydr Polym Technol Appl. 2021;2:100022.
  • Meereboer KW, Misra M, Mohanty AK. Review of recent advances in the biodegradability of polyhydroxyalkanaoate (PHA) bioplastics and their composites. Green Chem. 2020;2:2–40.
  • Yu S, Sun J, Shi Y, et al. Nanocellulose from various biomass wastes: its preparation and potential usages towards the high value-added products. Environ Sci Ecotechnol. 2021;5:100077.
  • Das RK, Brar SK, Verma M. A fermentative approach towards optimizing directed biosynthesis of fumaric acid by Rhizopus oryzae 1526 utilizing apple industry waste biomass. Fungal Biol. 2015;9:190–207.
  • Pandiyan K, Singh A, Singh S, et al. Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renew Energy. 2019;132:723–741.
  • Primožič M, Kravanja G, Knez Ž, et al. Immobilized laccase in the form of (magnetic) cross-linked enzyme aggregates for sustainable diclofenac (bio)degradation. J Clean Prod. 2020;275:124121.
  • Ranjan B, Pillai S, Permaul K, et al. A novel strategy for the efficient removal of toxic cyanate by the combinatorial use of recombinant enzymes immobilized on aminosilane modified magnetic nanoparticles. Bioresour Technol. 2018;253:105–111.
  • Patel SN, Sharma M, Lata K, et al. Improved operational stability of d-psicose 3-epimerase by a novel protein engineering strategy, and d-psicose production from fruit and vegetable residues. Bioresour Technol. 2016;216:121–127.
  • Mohammadkazemi F, Doosthoseini K, Ganjian E, et al. Manufacturing of bacterial nano-cellulose reinforced fiber-cement composites. Constr Build Mater. 2015;101:958–964.
  • Huang C, Guo HJ, Xiong L, et al. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym. 2016;136:198–202.
  • Barja F. Bacterial nanocellulose production and biomedical applications. J Biomed Res. 2021;35:310.
  • Rangaswamy BE, Vanitha KP, Hungund BS. Microbial cellulose production from bacteria isolated from rotten fruit. Int J Polym Sci. 2015;2015. DOI:10.1155/2015/280784
  • Dubey S, Singh J, Singh RP. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using Komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation. Bioresour Technol. 2018;247:73–80.
  • Jung HI, Jeong JH, Lee OM, et al. Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour Technol. 2010;101:3602–3608.
  • Li Z, Wang L, Hua J, et al. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum. Carbohydr Polym. 2015;120:115–119.
  • Dubey S, Sharma RK, Agarwal P, et al. From rotten grapes to industrial exploitation: komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose. Int J Biol Macromol. 2017;96:52–60.
  • Revin V, Liyaskina E, Nazarkina M, et al. Cost-effective production of bacterial cellulose using acidic food industry by-products. Brazilian J Microbiol. 2018;49:151–159.
  • Abol-Fotouh D, Hassan MA, Shokry H, et al. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci Rep. 2020;10:1–14.
  • Hu Y, Catchmark JM. Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules. 2010;11(7):1727–1734.
  • Hu Y, Catchmark JM, Vogler EA. Factors impacting the formation of sphere-like bacterial cellulose particles and their biocompatibility for human osteoblast growth. Biomacromolecules. 2013;14:3444–3452.
  • Kouda T, Yano H, Yoshinaga F. Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture. J Ferment Bioeng. 1997;83:371–376.
  • Kouda T, Yano H, Yoshinaga F, et al. Characterization of non-newtonian behavior during mixing of bacterial cellulose in a bioreactor. J Ferment Bioeng. 1996;82:382–386.
  • Hu Y, Catchmark JM. Studies on sphere-like bacterial cellulose produced by Acetobacter xylinum under agitated culture. Am Soc Agric Biol Eng Annu Int Meet. 2010;3:1771–1781. ASABE 2010.
  • Czaja W, Krystynowicz A, Bielecki S, et al. Microbial cellulose - The natural power to heal wounds. Biomaterials. 2006;27:145–151.
  • Onodera M, Harashima I, Toda K, et al. Silicone rubber membrane bioreactors for bacterial cellulose production. Biotechnol Bioprocess Eng. 2002;7(5):289–294.
  • Lin SP, Hsieh SC, Chen KI, et al. Semi-continuous bacterial cellulose production in a rotating disk bioreactor and its materials properties analysis. Cellulose. 2014;21:835–844.
  • Wu SC, Li MH. Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus. J Biosci Bioeng. 2015;120:444–449.
  • Chao YP, Sugano Y, Kouda T, et al. Production of bacterial cellulose by Acetobacter xylinum with an air-lift reactor. Biotechnol Tech. 1997;11:829–832.
  • Kuure-Kinsey M, Weber D, Bungay HR, et al. Modeling and predictive control of a rotating disk bioreactor. Proc Am Control Conf. 2005;5:3259–3264.
  • Chao Y, Ishida T, Sugano Y, et al. Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng. 2000;68:345–352.
  • Song HJ, Li H, Seo JH, et al. Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng. 2009;26:141–146.
  • Lu H, Jiang X. Structure and properties of bacterial cellulose produced using a trickling bed reactor. Appl Biochem Biotechnol. 2014;172:3844–3861.
  • Cheng KC, Catchmark JM, Demirci A. Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng. 2009;3:12.
  • Akhlaghi MA, Bagherpour R, Kalhori H. Application of bacterial nanocellulose fibers as reinforcement in cement composites. Constr Build Mater. 2020;241:118061.
  • Azeredo HMC, Barud H, Farinas CS, et al. Bacterial cellulose as a raw material for food and food packaging applications. Front Sustainable Food Syst. 2019;3. DOI:10.3389/fsufs.2019.00007
  • Ludwicka K, Kaczmarek M, Białkowska A. Bacterial nanocellulose—a biobased polymer for active and intelligent food packaging applications: recent advances and developments. Polymers (Basel). 2020;12:1–23.
  • Gama M, Dourado F. Bacterial nanocellulose: what future? BioImpacts. 2018;8:1–3.
  • Ávila M, Feldmann H, Pleumeekers E-M, et al. Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo. Biomaterials. 2015;44:1–44.
  • Naz S, Ali JS, Zia M. Bio-design and manufacturing nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims nanocellulose isolation characterization and applications: a journey from non-remedial to biomedical claims. Bio Design Manuf. 2019;4:1–27.
  • Hoeng F, Denneulin A, Bras J. Use of nanocellulose in printed electronics: a review. Nanoscale. 2016;8:13131–13154.
  • Du X, Zhang Z, Liu W, et al. Nanocellulose-based conductive materials and their emerging applications in energy devices - A review nano energy nanocellulose-based conductive materials and their emerging applications in energy devices - A review. Nanoenergy. 2017;35:299–320.
  • Yuan H, Chen L, Cao Z, et al. Enhanced decolourization efficiency of textile dye reactive blue 19 in a horizontal rotating reactor using strips of BNC-immobilized laccase: optimization of conditions and comparison of decolourization efficiency. Biochem Eng J. 2020;156:107501.
  • Jedrzejczak-krzepkowska M, Kubiak K, Ludwicka K, et al. Bacterial nanocellulose synthesis, recent findings. Bact Nanocellulose. 2016;26:19–46. Elsevier B.V.
  • Voisin H, Bergström L, Liu P, et al. Nanocellulose-based materials for water purification. Nanomaterials. 2017;7:1–18.
  • Phanthong P, Reubroycharoen P, Hao X, et al. Nanocellulose: extraction and application. Carbon Resour Convers. 2018;1:32–43.
  • Hokkanen S, Repo E, Sillanpää M. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J. 2013;223:40–47.
  • Reshmy R, Thomas D, Philip E, et al. Potential of nanocellulose for wastewater treatment. Chemosphere. 2021;281:130738.
  • Skočaj M. Bacterial nanocellulose in papermaking. Cellulose. 2019;26:6477–6488.
  • Stanisławska A. Bacterial nanocellulose as a microbiological derived nanomaterial. Adv Mater Sci. 2016;16:45–57.
  • Bayazidi P, Almasi H, Pourfathi B. Immobilized lysozyme onto bacterial cellulose nanofibers as active and reinforcing agent of sodium caseinate based films: physical characteristics and antimicrobial activity. J Food Bioprocess Eng. 2021;4:11–18.
  • Silva SMF, Ribeiro HL, Mattos ALA, et al. Films from cashew byproducts: cashew gum and bacterial cellulose from cashew apple juice. J Food Sci Technol. 2020;58:1979–1986.
  • Albuquerque RMB, Meira HM, Silva IDL, et al. Production of a bacterial cellulose/poly(3-hydroxybutyrate) blend activated with clove essential oil for food packaging. Polym Polym Compos. 2021;29:259–270.
  • Rachtanapun P, Jantrawut P, Klunklin W, et al. Carboxymethyl bacterial cellulose from nata de coco: effects of NaOH. Polymers (Basel). 2021;13:1–17.
  • Santosa B, Wignyanto W, Hidayat N, et al. The quality of nata de coco from sawarna and mapanget coconut varieties to the time of storing coconut water. Food Res. 2020;4:957–963.
  • Mohd Ali M, Hashim N, Abd Aziz S, et al. Pineapple (Ananas comosus): a comprehensive review of nutritional values, volatile compounds, health benefits, and potential food products. Food Res Int. 2020;137:109675.
  • Almeida T, Silvestre AJD, Vilela C, et al. Bacterial nanocellulose toward green cosmetics: recent progresses and challenges. Int J Mol Sci. 2021;22:1–25.
  • Fernandes I de AA, Maciel GM, Ribeiro VR, et al. The role of bacterial cellulose loaded with plant phenolics in prevention of UV-induced skin damage. Carbohydr Polym Technol Appl. 2021;2:100122.
  • Emre OY, Keskin-Erdogan Z, Safa N, et al. A review of functionalised bacterial cellulose for targeted biomedical fields. J Biomater Appl. 2021;36(4):648–681.
  • Stasiak-Rozanska L, Ploska J. Study on the use of microbial cellulose as a biocarrier for 1,3-dihydroxy-2-propanone and its potential application in industry. Polym (Basel). 2018;10:437–447.
  • Charreau H, Cavallo E, Foresti ML. Patents involving nanocellulose: analysis of their evolution since 2010. Carbohydr Polym. 2020;237:116039.
  • Cocarta A-I, Hobzova R, Trchova M, et al. 2-hydroxyethyl methacrylate hydrogels for local drug delivery: study of topotecan and vincristine sorption/desorption kinetics and polymer-drug interaction by ATR-FTIR spectroscopy. Macromol Chem Phys. 2021;222:2100086.
  • Zmejkoski D, Spasojević D, Orlovska I, et al. Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. Int J Biol Macromol. 2018;118:494–503.
  • Chu M, Gao H, Liu S, et al. Functionalization of composite bacterial cellulose with C60 nanoparticles for wound dressing and cancer therapy. RSC Adv. 2018;8:18197–18203.
  • Xue Y, Mou Z, Xiao H. Nanocellulose as sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale. 2017;9:14758–14781.
  • Shahriari-khalaji M, Hong S, Hu G, et al. Bacterial nanocellulose-enhanced alginate. Polymers (Basel). 2020;12:1–20.
  • Sheikhi A. Emerging cellulose-based nanomaterials and nanocomposites. Elsevier Inc.; 2019. DOI:10.1016/B978-0-12-814615-6.00009-6.
  • Huang L, Yuan W, Hong Y, et al. 3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells. Cellulose. 2021;28:241–257.
  • de Oliveira Barud HG, Da Silva RR, Borges MAC, et al. Bacterial nanocellulose in dentistry: perspectives and challenges. Molecules. 2020;26:48–63.
  • Kotatha D, Morishima K, Uchida S, et al. Preparation and characterization of gel electrolyte with bacterial cellulose coated with alternating layers of chitosan and alginate for electric double-layer capacitors. Res Chem Intermed. 2018;44:4971–4987.
  • Luo H, Xie J, Xiong L, et al. Fabrication of flexible, ultra-strong, and highly conductive bacterial cellulose-based paper by engineering dispersion of graphene nanosheets. Compos Part B Eng. 2019;162:484–490.
  • Wan Y, Li J, Yang Z, et al. Simultaneously depositing polyaniline onto bacterial cellulose nanofibers and graphene nanosheets toward electrically conductive nanocomposites. Curr Appl Phys. 2018;18:933–940.
  • Xie Y, Zheng Y, Fan J, et al. Novel electronic-ionic hybrid conductive composites for multifunctional flexible bioelectrode based on in situ synthesis of poly(dopamine) on bacterial cellulose. ACS Appl Mater Interfaces. 2018;10:22692–22702.
  • Huo D, Chen B, Meng G, et al. Ag-nanoparticles@bacterial nanocellulose as a 3D flexible and robust surface-enhanced raman scattering substrate. ACS Appl Mater Interfaces. 2020;12:50713–50720.