1,839
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Trimethylamine N-oxide promotes atherosclerosis via regulating the enriched abundant transcript 1/miR-370-3p/signal transducer and activator of transcription 3/flavin-containing monooxygenase-3 axis

, , &
Pages 1541-1553 | Received 27 Sep 2021, Accepted 19 Nov 2021, Published online: 06 Jan 2022

References

  • Drüeke TB, Massy ZA. Atherosclerosis in CKD: differences from the general population. Nat Rev Nephrol. 2010;6:723–725.
  • Tedgui A, Mallat Z. Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev. 2006;86:515–581.
  • Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovasc Diabetol. 2018;17:121.
  • Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 2009;6:399–409.
  • Souilhol C, Harmsen MC, Evans PC, et al. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc Res. 2018;114:565–577.
  • Sorokin V, Vickneson K, Kofidis T, et al. Role of vascular smooth muscle cell plasticity and interactions in vessel wall inflammation. Front Immunol. 2020;11:599415.
  • Badimon L, Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J Intern Med. 2014;276:618–632.
  • Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ Res. 2019;124:315–327.
  • Bäck M, Yurdagul A Jr, Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol. 2019;16:389–406.
  • Gragnano F, Calabrò P. Role of dual lipid-lowering therapy in coronary atherosclerosis regression: Evidence from recent studies. Atherosclerosis. 2018;269:219–228.
  • Calabrò P, Gragnano F, Pirro M. Cognitive function in a randomized trial of evolocumab. N Engl J Med. 2017;377(20):1996–1997.
  • Mahmoud MM, Kim HR, Xing R, et al. TWIST1 integrates endothelial responses to flow in vascular dysfunction and atherosclerosis. Circ Res. 2016;119:450–462.
  • Chen Y, Weng Z, Liu Q, et al. FMO3 and its metabolite TMAO contribute to the formation of gallstones. Biochim Biophys Acta Mol Basis Dis. 2019;1865:2576–2585.
  • Gimbrone MA Jr, Endothelial Cell G-CG. Dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–636.
  • Chou RH, Chen CY, Chen IC, et al. Trimethylamine N-Oxide, circulating endothelial progenitor cells, and endothelial function in patients with stable angina. Sci Rep. 2019;9:4249.
  • Singh GB, Zhang Y, Boini KM, et al. High mobility group box 1 mediates TMAO-induced endothelial dysfunction. Int J Mol Sci. 2019;20:3570.
  • Ke Y, Li D, Zhao M, et al. Gut flora-dependent metabolite Trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radic Biol Med. 2018;116:88–100.
  • Chen L, Jin Y, Wang N, et al. Trimethylamine N-oxide impairs perfusion recovery after hindlimb ischemia. Biochem Biophys Res Commun. 2020;530:95–99.
  • Kolb JP, Oguin TH3, Oberst A, et al. Programmed cell death and inflammation: Winter is coming. Trends Immunol. 2017;38(10):705–718.
  • Rizzacasa B, Amati F, Romeo F, et al. Epigenetic modification in coronary atherosclerosis: JACC review topic of the week. J Am Coll Cardiol. 2019;74:1352–1365.
  • Kumar S, Williams D, Sur S, et al. Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vascul Pharmacol. 2019;114:76–92.
  • Zhang X, Guan MX, Jiang QH, et al. NEAT1 knockdown suppresses endothelial cell proliferation and induces apoptosis by regulating miR-638/AKT/mTOR signaling in atherosclerosis. Oncol Rep. 2020;44:115–125.
  • Wu X, Chen L, Zeb F, et al. Regulation of circadian rhythms by NEAT1 mediated TMAO-induced endothelial proliferation: a protective role of asparagus extract. Exp Cell Res. 2019;382:111451.
  • Hu YW, Guo FX, Xu YJ, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129(3):1115–1128.
  • Coffey AR, Kanke M, Smallwood TL, et al. microRNA-146a-5p association with the cardiometabolic disease risk factor TMAO. Physiol Genomics. 2019;51:59–71.
  • Zhang Z, Salisbury D, Sallam T. Long noncoding RNAs in atherosclerosis: JACC review topic of the week. J Am Coll Cardiol. 2018;72:2380–2390.
  • Guo FX, Wu Q, Li P, et al. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ. 2019;26:1670–1687.
  • Huang Y, Wang L, Mao Y, et al. Long noncoding RNA-H19 contributes to atherosclerosis and induces ischemic stroke via the upregulation of acid phosphatase 5. Front Neurol. 2019;10:32.
  • Zhao J, Chen F, Ma W, et al. Suppression of long noncoding RNA NEAT1 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-378a-3p. Gene. 2020;731:144324.
  • Jethva PN, Udgaonkar JB. The osmolyte TMAO modulates protein folding cooperativity by altering global protein stability. Biochemistry. 2018;57:5851–5863.
  • Zhang M, Zhang M, Ning L, et al. Long non-coding RNA LOC285194 regulates vascular smooth muscle cell apoptosis in atherosclerosis. Bioengineered. 2020;11(1):53–60.
  • Ding P, Ding Y, Tian Y, et al. RNA circ_0010283 regulates the viability and migration of oxidized low-density lipoprotein-induced vascular smooth muscle cells via an miR-370-3p/HMGB1 axis in atherosclerosis. Int J Mol Med. 2020;46:1399–1408.
  • Gu Y, Becker V, Zhao Y, et al. miR-370 inhibits the angiogenic activity of endothelial cells by targeting smoothened (SMO) and bone morphogenetic protein (BMP)-2. FASEB J. 2019;33:7213–7224.
  • Wang S, Li J, Chen A, et al. Differentiated expression of long non-coding RNA-small nucleolar RNA host gene 8 in atherosclerosis and its molecular mechanism. Bioengineered. 2021;12(1):7167–7176.
  • Wu L, Tan JL, Chen ZY, et al. Cardioprotection of post-ischemic moderate ROS against ischemia/reperfusion via STAT3-induced the inhibition of MCU opening. Basic Res Cardiol. 2019;114:39.
  • Su SA, Yang D, Wu Y, et al. EphrinB2 regulates cardiac fibrosis through modulating the interaction of Stat3 and TGF-beta/Smad3 signaling. Circ Res. 2017;121:617–627.
  • Ma L, Zheng H, Zhang T. IL-10 suppress vascular smooth muscle cell apoptosis via JAK2/STAT3 signaling pathway and its mechanism of action in atherosclerosis. Minerva Endocrinol. 2019;44:402–405.
  • Tang T, Duan Z, Xu J, et al. Pterostilbene reduces endothelial cell injury in vascular arterial walls by regulating the Nrf2-mediated AMPK/STAT3 pathway in an atherosclerosis rat model. Exp Ther Med. 2020;19:45–52.
  • Kim BH, Lee Y, Yoo H, et al. Anti-angiogenic activity of thienopyridine derivative LCB03-0110 by targeting VEGFR-2 and JAK/STAT3 Signalling. Exp Dermatol. 2015;24:503–509.
  • Alsaffar H, Martino N, Garrett JP, et al. Interleukin-6 promotes a sustained loss of endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and de novo protein synthesis. Am J Physiol Cell Physiol. 2018;314:C589–C602.
  • Ganta VC, Choi M, Kutateladze A, et al. VEGF165b modulates endothelial VEGFR1-STAT3 signaling pathway and angiogenesis in human and experimental peripheral arterial disease. Circ Res. 2017;120:282–295.
  • Bushueva OY, Bulgakova IV, Ivanov VP, et al. Association of flavin monooxygenase gene E158K polymorphism with chronic heart disease risk. Bull Exp Biol Med. 2015;159:776–778.
  • Shi Y, Hu J, Geng J, et al. Berberine treatment reduces atherosclerosis by mediating gut microbiota in apoE-/- mice. Biomed Pharmacother. 2018;107:1556–1563.