1,449
Views
9
CrossRef citations to date
0
Altmetric
Research Paper

Hyperoxia induces alveolar epithelial cell apoptosis by regulating mitochondrial function through small mothers against decapentaplegic 3 (SMAD3) and extracellular signal-regulated kinase 1/2 (ERK1/2)

, , , &
Pages 242-252 | Received 11 Oct 2021, Accepted 27 Nov 2021, Published online: 25 Dec 2021

References

  • Jobe AH, Kallapur SG. Long term consequences of oxygen therapy in the neonatal period. Semin Fetal Neonatal Med. 2010;15(4):230–235.
  • Davidson LM, Berkelhamer SK. Bronchopulmonary dysplasia: chronic lung disease of infancy and long-term pulmonary outcomes. J Clin Med. 2017;6(1) :4–23.
  • Hilgendorff A, Reiss I, Ehrhardt H, et al. Chronic lung disease in the preterm infant. Lessons learned from animal models. Am J Respir Cell Mol Biol. 2014;50:233–245.
  • Dieperink HI, Blackwell TS, Prince LS. Hyperoxia and apoptosis in developing mouse lung mesenchyme. Pediatr Res. 2006;59:185–190.
  • Bourbon J, Boucherat O, Chailley-Heu B, et al. Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia. Pediatr Res. 2005;57(5 Part 2):38R–46R.
  • Tuder RM, Yoshida T, Arap W, et al. State of the art. Cellular and molecular mechanisms of alveolar destruction in emphysema: an evolutionary perspective. Proc Am Thorac Soc. 2006;3(6):503–510.
  • Khan P, Fytianos K, Tamo L, et al. Culture of human alveolar epithelial type II cells by sprouting. Respir Res. 2018;19:204.
  • Kasper M, Barth K. Potential contribution of alveolar epithelial type I cells to pulmonary fibrosis. Biosci Rep. 2017;37(6):BSR20171301.
  • Kannan S, Huang H, Seeger D, et al. Alveolar epithelial type II cells activate alveolar macrophages and mitigate P. Aeruginosa infection. PLoS One. 2009;4(3):e4891.
  • Corbiere V, Dirix V, Norrenberg S, et al. Phenotypic characteristics of human type II alveolar epithelial cells suitable for antigen presentation to T lymphocytes. Respir Res. 2011;12(1):15.
  • Qin S, Chen M, Ji H, et al. miR215p regulates type II alveolar epithelial cell apoptosis in hyperoxic acute lung injury. Mol Med Rep. 2018;17(4):5796–5804.
  • Ratner V, Starkov A, Matsiukevich D, et al. Mitochondrial dysfunction contributes to alveolar developmental arrest in hyperoxia-exposed mice. Am J Respir Cell Mol Biol. 2009;40(5):511–518.
  • Ten VS. Mitochondrial dysfunction in alveolar and white matter developmental failure in premature infants. Pediatr Res. 2017;81(2):286–292.
  • Chen H, Sun J, Buckley S, et al. Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol. 2005;288(4):L683–91.
  • Zabini D, Granton E, Hu Y, et al. Loss of SMAD3 promotes vascular remodeling in pulmonary arterial hypertension via MRTF disinhibition. Am J Respir Crit Care Med. 2018;197(2):244–260.
  • Li-Fu L, Chung-Shu L, Yung-Yang L, et al. Activation of Src-dependent Smad3 signaling mediates the neutrophilic inflammation and oxidative stress in hyperoxia-augmented ventilator-induced lung injury. Respir Res. 2015;16. DOI:10.1186/s12931-015-0275-6.
  • Xu F, Lin SH, Yang YZ, et al. The effect of curcumin on sepsis-induced acute lung injury in a rat model through the inhibition of the TGF-β1/SMAD3 pathway. Int Immunopharmacol. 2013;16(1):1–6.
  • Hu Y, Fu J, Liu X, et al. ERK1/2 signaling pathway activated by EGF promotes proliferation, transdifferentiation, and migration of cultured primary newborn rat lung fibroblasts. Biomed Res Int. 2020;2020:7176169.
  • Porzionato A, Sfriso MM, Mazzatenta A, et al. Effects of hyperoxic exposure on signal transduction pathways in the lung. Respir Physiol Neurobiol. 2015;209:106–114.
  • Lei Z, Yang H, Zeng Y, et al. JAK/STAT3 signaling is required for TGF-beta-induced epithelial-mesenchymal transition in lung cancer cells. Int J Oncol. 2014; 44(5): 1643–1651 .
  • Honorine L, Olga S, Aurelie C, et al. Quantitation of ERK1/2 inhibitor cellular target occupancies with a reversible slow off-rate probe. Chemical ence 2018; 9: 10.1039.C8SC02754D.;:.
  • Gong Y, Luo S, Fan P, et al. Growth hormone activates PI3K/Akt signaling and inhibits ROS accumulation and apoptosis in granulosa cells of patients with polycystic ovary syndrome. Reproductive Biology and Endocrinology .2020; 18(1) . p. 121–132.
  • Wang J, Huang Y, Hou X, et al. Morphologic damage of rat alveolar epithelial type ii cells induced by bile acids could be ameliorated by farnesoid X receptor inhibitor Z-Guggulsterone in vitro. Biomed Res Int. 2016;2016:1–9.
  • Hadanny A, Efrati S. The hyperoxic-hypoxic paradox. Biomolecules. 2020; 10(6) :958–974.
  • Bueno M, Calyeca J, Rojas M, et al. Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. Redox Biol. 2020;33:101509.
  • Dennery PA, Carr J, Peterson A, et al. The role of mitochondrial fatty acid use in neonatal lung injury and repair. Trans Am Clin Climatol Assoc. 2018;129:195–201.
  • Ma C, Beyer AM, Durand M, et al. Hyperoxia causes mitochondrial fragmentation in pulmonary endothelial cells by increasing expression of pro-fission proteins. Arterioscler Thromb Vasc Biol. 2018;38(3):622–635.
  • Mu G, Deng Y, Lu Z, et al. miR-20b suppresses mitochondrial dysfunction-mediated apoptosis to alleviate hyperoxia-induced acute lung injury by directly targeting MFN1 and MFN2. Acta Biochim Biophys Sin (Shanghai). 2021;53(2):220–228.
  • Yu X, Sun Y, Cai Q, et al. Hyperoxia exposure arrests alveolarization in neonatal rats via PTENinduced putative kinase 1Parkin and Nip3like protein Xmediated mitophagy disorders. Int J Mol Med. 2020;46(6):2126–2136.
  • Zhang H, Akman HO, Smith EL, et al. Cellular response to hypoxia involves signaling via Smad proteins. Blood. 2003;101(6):2253–2260.
  • Osorio-Fuentealba C, Valdes JA, Riquelme D, et al. Hypoxia stimulates via separate pathways ERK phosphorylation and NF-kappaB activation in skeletal muscle cells in primary culture. J Appl Physiol. 1985;2009(106):1301–1310.
  • Luo F, Shi J, Shi Q, et al. ERK and p38 upregulation versus Bcl-6 downregulation in rat kidney epithelial cells exposed to prolonged hypoxia. Cell Transplant. 2017;26(8):1441–1451.
  • Tanabe Y, Morikawa Y, Kato T, et al. Effects of olmesartan, an AT1 receptor antagonist, on hypoxia-induced activation of ERK1/2 and pro-inflammatory signals in the mouse lung. Naunyn Schmiedebergs Arch Pharmacol. 2006;374(3):235–248.
  • Ge X, Vajjala A, McFarlane C, et al. Lack of Smad3 signaling leads to impaired skeletal muscle regeneration. Am J Physiol Endocrinol Metab. 2012;303(1):E90–102.
  • Alonso M, Melani M, Converso D, et al. Mitochondrial extracellular signal-regulated kinases 1/2 (ERK1/2) are modulated during brain development. J Neurochem. 2004;89:248–256.