1,216
Views
8
CrossRef citations to date
0
Altmetric
Research Paper

Knockdown long non-coding RNA HCP5 enhances the radiosensitivity of esophageal carcinoma by modulating AKT signaling activation

, , & ORCID Icon
Pages 884-893 | Received 15 Oct 2021, Accepted 30 Nov 2021, Published online: 30 Dec 2021

References

  • Yang YM, Hong P, Xu WW, et al. Advances in targeted therapy for esophageal cancer. Signal Transduct Target Ther. 2020;5(1). DOI:10.1038/s41392-020-00323-3.
  • Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9(4):217–222.
  • Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941–1953.
  • Su M, Xiao YH, Ma JL, et al. Long non-coding RNAs in esophageal cancer: molecular mechanisms, functions, and potential applications. J Hematol Oncol. 2018 Sep 17;11. doi:10.1186/s13045-018-0663-8.
  • Coleman HG, Xie SH, Lagergren J. The epidemiology of esophageal adenocarcinoma. Gastroenterology. 2018;154(2):390–405.
  • Qin SY, Yang L, Kong S, et al. LncRNA HCP5: a potential biomarker for diagnosing gastric cancer. Front Oncol. 2021;11. DOI:10.3389/fonc.2021.684531.
  • Zou SB, Gao Y, Zhang ST. lncRNA HCP5 acts as a ceRNA to regulate EZH2 by sponging miR-138-5p in cutaneous squamous cell carcinoma. Int J Oncol. 2021;59(2):56.
  • Chen J, Zhao DJ, Meng Q. Knockdown of HCP5 exerts tumor-suppressive functions by up-regulating tumor suppressor miR-128-3p in anaplastic thyroid cancer. Biomed Pharmacother. 2019;116:108966.
  • Bai N, Ma Y, Zhao J, et al. Knockdown of lncRNA HCP5 suppresses the progression of colorectal cancer by miR-299-3p/PFN1/AKT Axis. Cancer Manag Res. 2020;12:4747–4758.
  • Gao M, Liu L, Yang Y, et al. LncRNA HCP5 induces gastric cancer cell proliferation, invasion, and EMT processes through the miR-186-5p/WNT5A axis under hypoxia. Front Cell Dev Biol. 2021;9. DOI:10.3389/fcell.2021.663654.
  • Karreth FA, Pandolfi PP. ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov. 2013;3(10):1113–1121.
  • Zhao J, Li L, Yang T. MiR-216a-3p suppresses the proliferation and invasion of cervical cancer through downregulation of ACTL6A-mediated YAP signaling. J Cell Physiol. 2020;235(12):9718–9728.
  • Wu YF, Zhang J, Zheng Y, et al. miR-216a-3p inhibits the proliferation, migration, and invasion of human gastric cancer cells via targeting RUNX1 and activating the NF-kappa B signaling pathway. Oncol Res. 2018;26(1):157–171.
  • Ning ML, Qin S, Tian J, et al. LncRNA AFAP-AS1 promotes anaplastic thyroid cancer progression by sponging miR-155-5p through ETS1/ERK pathway. Bioengineered. 2021;12(1):1543–1554.
  • Peters SJ. Regulation of PDH activity and isoform expression: diet and exercise. Biochem Soc Trans. 2003;31:1274–1280.
  • Zhang W, Hu X, Chakravarty H, et al. Identification of novel pyruvate dehydrogenase kinase 1 (PDK1) inhibitors by kinase activity-based high-throughput screening for anticancer therapeutics. ACS Comb Sci. 2018;20(11):660–671.
  • Molinaro C, Martoriati A, Lescuyer A, et al. 3-phosphoinositide-dependent protein kinase 1 (PDK1) mediates crosstalk between Src and Akt pathways in MET receptor signaling. FEBS Lett. 2021;595(21):2655–2664.
  • Wang C, Li S, Liu J, et al. Silencing of S-phase kinase-associated protein 2 enhances radiosensitivity of esophageal cancer cells through inhibition of PI3K/AKT signaling pathway. Genomics. 2020;112(5):3504–3510.
  • Zhang Y, Chen W, Wang H, et al. Upregulation of miR-519 enhances radiosensitivity of esophageal squamous cell carcinoma trough targeting PI3K/AKT/mTOR signaling pathway. Cancer Chemother Pharmacol. 2019;84(6):1209–1218.
  • Chang L, Graham PH, Ni J, et al. Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Crit Rev Oncol Hematol. 2015;96(3):507–517.
  • Mardanshahi A, Gharibkandi NA, Vaseghi S, et al. The PI3K/AKT/mTOR signaling pathway inhibitors enhance radiosensitivity in cancer cell lines. Mol Biol Rep. 2021;48(8):6167–6180.
  • Zhang WX, Yu DL, Peng JH, et al. Gastric-tube versus whole-stomach esophagectomy for esophageal cancer: a systematic review and meta-analysis. Plos One. 2017;12(3):e0173416.
  • Zhang HF, Si J, Yue J, et al. The mechanisms and reversal strategies of tumor radioresistance in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 2021;147(5):1275–1286.
  • Demarest CT, Chang AC. The landmark series: multimodal therapy for esophageal cancer. Ann Surg Oncol. 2021;28(6):3375–3382.
  • Wang P, Yang ZB, Ye T, et al. lncTUG1/miR-144-3p affect the radiosensitivity of esophageal squamous cell carcinoma by competitively regulating c-MET. J Exp Clin Cancer Res. 2020;39(1):7.
  • Cui Z, Liu J, Sun Q, et al. GPR120 promotes radiation resistance in esophageal cancer via regulating AKT and apoptosis pathway. Anticancer Drugs. 2021;32(1):53–60.
  • Zhang FQ, Shao C, Chen Z, et al. Low dose of trichostatin A improves radiation resistance by activating Akt/Nrf2-dependent antioxidation pathway in cancer cells. Radiat Res. 2021;195(4):366–377.
  • Tang Y, Liu B, Li J, et al. Genetic variants in PI 3K/AKT pathway are associated with severe radiation pneumonitis in lung cancer patients treated with radiation therapy. Cancer Med. 2016;5(1):24–32.
  • Kaboli PJ, Salimian F, Aghapour S, et al. Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer - A comprehensive review from chemotherapy to immunotherapy. Pharmacol Res. 2020;156:104806.
  • Estruch M, Reckzeh K, Vittori C, et al. Targeted inhibition of cooperative mutation- and therapy-induced AKT activation in AML effectively enhances response to chemotherapy. Leukemia. 2021;35(7):2030–2042.
  • Han S, Wang P-F, Cai H-Q, et al. Alterations in the RTK/Ras/PI3K/AKT pathway serve as potential biomarkers for immunotherapy outcome of diffuse gliomas. Aging-Us. 2021;13(11):15444–15458.
  • Wu LZ, Huang M-L, Qi C-L, et al. Overexpression of Notch2 enhances radiosensitivity via inhibition of the AKT/mTOR signaling pathway in nasopharyngeal carcinoma. Bioengineered. 2021;12(1):3398–3409.