11,922
Views
32
CrossRef citations to date
0
Altmetric
Review

Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 6521-6557 | Received 15 Nov 2021, Accepted 17 Jan 2022, Published online: 25 Feb 2022

References

  • Chew KR, Leong HY, Khoo KS, et al. Effects of anaerobic digestion of food waste on biogas production and environmental impacts: a review. Environ Chem Lett. 2021;19:2921–2939.
  • Sekoai PT, Ghimire A, Ezeokoli OT, et al. Valorization of volatile fatty acids from the dark fermentation waste streams-A promising pathway for a biorefinery concept. Renew Sust Energ Rev. 2021;143:110971.
  • Khanal SK. Microbiology and Biochemistry of Anaerobic Biotechnology. In: Khanal SK, editors. Anaerobic Biotechnology for Bioenergy Production: Principles and Applications. John Wiley & Sons, Inc; 2008. DOI:10.1002/9780813804545.ch2
  • Insam H, Franke-whittle I, Goberna M. Microbes at work: from wastes to resources. Berlin Heidelberg: Springer; 2009.
  • Kalamdhad A. Integrated approaches towards solid waste management. New Delhi, India: Springer; 2021.
  • Khanal SK. Anaerobic biotechnology for bioenergy production: principles and applications. Iowa, USA: Wiley-blackwell; 2011.
  • Ostrem K, Themelis NJ. Greening Waste: Anaerobic Digestion for Treating the Organic Fraction of Municipal Solid Wastes. Earth Engineering Center Columbia University; 2004.
  • Hatti-kaul R, Mamo G, Mattiasson B. Anaerobes in biotechnology. Switzerland: Springer International Publishing; 2016.
  • Singh L, Yousuf A, Mahapatra DM. Bioreactors: sustainable design and industrial applications in mitigation of Ghg emissions. Amsterdam, Netherlands: Elsevier Science & Technology; 2020.
  • Weiland P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol. 2010;85(4):849–860.
  • Czatzkowska M, Harnisz M, Korzeniewska E, et al. Inhibitors of the methane fermentation process with particular emphasis on the microbiological aspect: a review. Energy Sci Eng. 2020;8:1880–1897.
  • De Lemos Chernicharo CA. Anaerobic reactors. London, UK: IWA Publishing; 2007.
  • Korres N, O’kiely P, Benzie JAH, et al. Bioenergy production by anaerobic digestion: using agricultural biomass and organic wastes. Abingdon, UK: Taylor & Francis; 2013.
  • Muñoz P. Assessment of batch and semi-continuous anaerobic digestion of food waste at psychrophilic range at different food waste to inoculum ratios and organic loading rates. Waste Biomass Valorization. 2019;10(8):2119–2128.
  • Kumar Awasthi M, Ravindran B, Sarsaiya S, et al. Metagenomics for taxonomy profiling: tools and approaches. Bioengineered. 2020;11(1):356–374.
  • Srivastava M, Srivastava N, Singh R. Bioenergy research: biomass waste to energy. Singapore: Springer Singapore; 2021.
  • Tabatabaei M, Ghanavati H. Biogas: fundamentals, process, and operation. Switzerland: Springer International Publishing; 2018.
  • Krakat N, Schmidt S, Scherer P. Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. Bioresour Technol. 2011;102(10):5692–5701.
  • Merlino G, Rizzi A, Villa F, et al. Shifts of microbial community structure during anaerobic digestion of agro-industrial energetic crops and food industry byproducts. J Chem Technol Biot. 2012;87(9):1302–1311.
  • Ivarsson M, Schnürer A, Bengtson S, et al. Anaerobic fungi: a potential source of biological H2 in the oceanic crust. Front Microbiol. 2016;7. DOI:10.3389/fmicb.2016.00674
  • Kazda M, Langer S, Bengelsdorf FR. Fungi open new possibilities for anaerobic fermentation of organic residues. Energy Sustainability Soc. 2014;4(1):1–9. DOI:10.1186/2192-0567-4-6
  • Vinzelj J, Joshi A, Insam H, et al. Employing anaerobic fungi in biogas production: challenges & opportunities. Bioresour Technol. 2020;300:122687.
  • Akyol Ç, Ince O, Bozan M, et al. Fungal bioaugmentation of anaerobic digesters fed with lignocellulosic biomass: what to expect from anaerobic fungus Orpinomyces sp. Bioresour Technol. 2019;277:1–10.
  • Hatti-kaul R, Mattiasson B. Anaerobes in Industrial- and Environmental Biotechnology. In: Hatti-Kaul R, Mamo G, Mattiasson B, editors. Anaerobes in Biotechnology. Switzerland: Springer International Publishing; 2016.
  • Amin FR, Khalid H, El-mashad HM, et al. Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production. SciTotal Environ. 2021;763:143007.
  • De Vrieze J, Saunders AM, HE Y, et al. Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res. 2015;75:312–323.
  • Narihiro T, Sekiguchi Y. Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update. Curr Opin Biotechnol. 2007;18(3):273–278.
  • Biberacher M, Tum M, Günther KP, et al. Availability assessment of bioenergy and power plant location optimization: a case study for Pakistan. Renew Sust Energ Rev. 2015;42:700–711.
  • Kainthola J, Kalamdhad AS, Goud VV. A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochem. 2019;84:81–90.
  • Kucharska K, Hołowacz I, Konopacka-łyskawa D, et al. Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renewable Energy. 2018;129:384–408.
  • Sahu N, Deshmukh S, Chandrashekhar B, et al. Optimization of hydrolysis conditions for minimizing ammonia accumulation in two-stage biogas production process using kitchen waste for sustainable process development. J Environ Chem Eng. 2017;5(3):2378–2387.
  • Akunna JC. Anaerobic waste-wastewater treatment and biogas plants: a practical handbook. Florida, USA: CRC Press; 2018.
  • Horan N, Yaser AZ, N WID. Anaerobic digestion processes: applications and effluent treatment. Singapore: Springer Singapore; 2018.
  • Wang LK, Wang MHS, Hung YT. Integrated Natural Resources Research. Switzerland: Springer; 2021.
  • Christy PM, Gopinath L, Divya D. A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sust Energ Rev. 2014;34:167–173.
  • Joshi SJ, Deshmukh A, Sarma H. Biotechnology for sustainable environment. Singapore: Springer Singapore; 2021.
  • Kondusamy D, Kalamdhad AS. Pre-treatment and anaerobic digestion of food waste for high rate methane production–A review. J Environ Chem Eng. 2014;2(3):1821–1830.
  • Wang NX, LU XY, Tsang YF, et al. A comprehensive review of anaerobic digestion of organic solid wastes in relation to microbial community and enhancement process. J Sci Food Agric. 2019;99(2):507–516.
  • Madigan MT, Bender KS, Buckley DH, et al. Brock Biology of Microorganisms. London, UK: Pearson; 2018.
  • Stronach SM, Rudd T, Lester JN. Anaerobic digestion processes In industrial wastewater treatment. Berlin Heidelberg: Springer; 2012.
  • Ahamed MI, Prasad R. Recent advances in microbial degradation. Singapore: Springer; 2021.
  • Morris BEL, Henneberger R, Huber H, et al. Microbial syntrophy: interaction for the common good. FEMS Microbiol Rev. 2013;37(3):384–406.
  • Narrowe AB, Borton MA, Hoyt DW, et al. Uncovering the diversity and activity of methylotrophic methanogens in freshwater wetland soils. Msystems. 2019;4:e00320–19.
  • Vanwonterghem I, Evans PN, Parks DH, et al. Methylotrophic methanogenesis discovered in the archaeal phylum verstraetearchaeota. Nat Microbiol. 2016;1(12):16170.
  • Dong N, BU F, Zhou Q, et al. Performance and microbial community of hydrogenotrophic methanogenesis under thermophilic and extreme-thermophilic conditions. Bioresour Technol. 2018;266:454–462.
  • LEE C, KIM J, Shin SG, et al. Quantitative and qualitative transitions of methanogen community structure during the batch anaerobic digestion of cheese-processing wastewater. Appl Microbiol Biotechnol. 2010;87:1963–1973.
  • Gerardi MH. The microbiology of anaerobic digesters. New Jersey, USA: Wiley; 2003.
  • Woese CR, Kandler O, Wheelis ML 1990. NamesforLife Bacterial and Archaeal Nomenclature [Online]. Available: https://www.namesforlife.com/search [ Accessed].
  • Jabłoński S, Rodowicz P, Łukaszewicz M. Methanogenic archaea database containing physiological and biochemical characteristics. Int J Syst Evol Microbiol. 2015;65(Pt_4):1360–1368.
  • Alvarado A, Montañez-hernández LE, Palacio-molina SL, et al. Microbial trophic interactions and mcrA gene expression in monitoring of anaerobic digesters. Front Microbiol. 2014;5:597.
  • Campanaro S, Treu L, Kougias PG, et al. Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels. 2016;9(1):1–17.
  • LIU WT, Chan OC, Fang HH. Characterization of microbial community in granular sludge treating brewery wastewater. Water Res. 2002;36(7):1767–1775.
  • Martins G, Salvador AF, Pereira L, et al. Methane production and conductive materials: a critical review. Environ Sci Technol. 2018;52(18):10241–10253.
  • Anderson IJ, Sieprawska-lupa M, Goltsman E, et al. Complete genome sequence of Methanocorpusculum labreanum type strain Z. Stand Genomic Sci. 2009;1(2):197–203.
  • Schnürer A, Biogas production: microbiology and technology, Anaerobes Biotechnol. 16 (2016), DOI:10.1186/s12896-016-0248-y
  • St-pierre B, Wright A-DG. Comparative metagenomic analysis of bacterial populations in three full-scale mesophilic anaerobic manure digesters. Appl Microbiol Biotechnol. 2014;98(6):2709–2717.
  • Demirel B, Yenigün O. Two‐phase anaerobic digestion processes: a review. J Chem Technol Biotechnol Int Res Process Environ Clean Technol. 2002;77(7):743–755. DOI:10.1002/jctb.630
  • Westerholm M, Moestedt J, Schnürer A. Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance. Appl Energy. 2016;179:124–135.
  • Amani TA, Nosrati MN, Sreekrishnan TRSR, Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects — a review. Environ Rev. 2010; 18:255–278. DOI:10.1139/A10-011
  • De Bok F, Plugge C, Stams A. Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res. 2004;38(6):1368–1375.
  • SUN Y, Zuo J, Chen L, et al. Eubacteria and Archaea community of simultaneous methanogenesis and denitrification granular sludge. J Environ Sci (China). 2008;20(5):626–631.
  • Hoffmann RA, Garcia ML, Veskivar M, et al. Effect of shear on performance and microbial ecology of continuously stirred anaerobic digesters treating animal manure. Biotechnol Bioeng. 2008;100(1):38–48.
  • Rodrigues BC, De Mello BS,Grangeiro LC, et al. Microbial degradation in the biogas production of value-added compounds. In: Recent advances in microbial degradation. Singapore: Springer; 2021.
  • Zhang C, SU H, Baeyens J, et al. Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev. 2014;38:383–392.
  • Amani T, Nosrati M, Mousavi SM, et al. Analysis of the syntrophic anaerobic digestion of volatile fatty acids using enriched cultures in a fixed-bed reactor. Water Environ Res. 2012;84(5):460–472.
  • Grotenhuis J, Smit M, Plugge C, et al. Bacteriological composition and structure of granular sludge adapted to different substrates. Appl Environ Microbiol. 1991;57(7):1942–1949.
  • Alavi-borazjani SA, Capela I, Tarelho LAC. Over-acidification control strategies for enhanced biogas production from anaerobic digestion: a review. Biomass Bioenergy. 2020;143:105833.
  • Franke-whittle IH, Walter A, Ebner C, et al. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities. Waste Manage. 2014;34(11):2080–2089.
  • Gahlot P, Ahmed B, Tiwari SB, et al. Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: mechanism and application. Environ Technol Innovation. 2020;20:101056.
  • Shen L, Zhao Q, WU X, et al. Interspecies electron transfer in syntrophic methanogenic consortia: from cultures to bioreactors. Renew Sust Energ Rev. 2016;54:1358–1367.
  • Kumar V, Nabaterega R, Khoei S, et al. Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials. Renew Sust Energ Rev. 2021b;144:110965.
  • Wang Z, Wang T, SI B, et al. Accelerating anaerobic digestion for methane production: potential role of direct interspecies electron transfer. Renew Sust Energ Rev. 2021b;145:111069.
  • Summers ZM, Fogarty HE, Leang C, et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science. 2010;330(6009):1413–1415.
  • Angelidaki I, Batstone DJ. Anaerobic Digestion: Process. In: Solid Waste Technology and Management. West Sussex, United Kingdom: Wiley; 2011. .
  • Renslow R, Babauta J, Kuprat A, et al. Modeling biofilms with dual extracellular electron transfer mechanisms. Phys Chem Chem Phys. 2013;15(44):19262–19283.
  • Van Steendam C, Smets I, Skerlos S, et al. Improving anaerobic digestion via direct interspecies electron transfer requires development of suitable characterization methods. Curr Opin Biotechnol. 2019;57:183–190.
  • Jadhav P, Muhammad N, Bhuyar P, et al. A review on the impact of conductive nanoparticles (CNPs) in anaerobic digestion: applications and limitations. Environ Technol Innovation. 2021;23:101526.
  • Kumar M, Dutta S, YOU S, et al. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. J Clean Prod. 2021a;305:127143.
  • Liang J, LUO L, LI D, et al. Promoting anaerobic co-digestion of sewage sludge and food waste with different types of conductive materials: performance, stability, and underlying mechanism. Bioresour Technol. 2021b;337:125384.
  • Roopnarain A, Rama H, Ndaba B, et al. Unravelling the anaerobic digestion ‘black box’: biotechnological approaches for process optimization. Renew Sust Energ Rev. 2021;152:111717.
  • Xiao L, Lichtfouse E, Senthil Kumar P. Advantage of conductive materials on interspecies electron transfer-independent acetoclastic methanogenesis: a critical review. Fuel. 2021;305:121577.
  • Nguyen D, Khanal SK. A little breath of fresh air into an anaerobic system: how microaeration facilitates anaerobic digestion process. Biotechnol Adv. 2018;36(7):1971–1983.
  • Holmes DE, Shrestha PM, Walker DJF, et al. Metatranscriptomic evidence for direct interspecies electron transfer between geobacter and Methanothrix species in methanogenic rice paddy soils. Appl Environ Microbiol. 2017;83(9):e00223–17.
  • Park M-O, Ikenaga H, Watanabe K. Phage diversity in a methanogenic digester. Microb Ecol. 2007;53(1):98–103.
  • Pease S. An analysis of viral Metagenomes in acetate-fed anaerobic reactors. University of Washington; 2013.
  • Zhang J, Gao Q, Zhang Q, et al. Bacteriophage–prokaryote dynamics and interaction within anaerobic digestion processes across time and space. Microbiome. 2017;5:57.
  • Tamaki H, Zhang R, Angly FE, et al. Metagenomic analysis of DNA viruses in a wastewater treatment plant in tropical climate. Environ Microbiol. 2012;14(2):441–452.
  • Delforno TP, Lacerda Júnior GV, Noronha MF, et al. Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing. Microbiologyopen. 2017;6(3):e00443.
  • Eiserling F, Pushkin A, Gingery M, et al. Bacteriophage-like particles associated with the gene transfer agent of methanococcus voltae PS. J Gen Virol. 1999;80(Pt 12):3305–3308.
  • Chien I-C, Meschke JS, Gough HL, et al. Characterization of persistent virus-like particles in two acetate-fed methanogenic reactors. PLoS One. 2013;8(11):e81040.
  • Hernández S, Vives MJ. Phages in anaerobic systems. Viruses. 2020;12(10):1091.
  • Molnár J, Magyar B, Schneider G, et al. Identification of a novel archaea virus, detected in hydrocarbon polluted Hungarian and Canadian samples. PLOS ONE. 2020;15(4):e0231864.
  • Calusinska M, Marynowska M, Goux X, et al. Analysis of ds DNA and RNA viromes in methanogenic digesters reveals novel viral genetic diversity. Environ Microbiol. 2016;18(4):1162–1175.
  • Heyer R, Schallert K, Siewert C, et al. Metaproteome analysis reveals that syntrophy, competition, and phage-host interaction shape microbial communities in biogas plants. Microbiome. 2019;7(1):69.
  • Runa V, Wenk J, Bengtsson S, et al. Bacteriophages in biological wastewater treatment systems: occurrence, characterization, and function. Front Microbiol. 2021;12:2708.
  • Tang X, Zhou M, FAN C, et al. Benzyl butyl phthalate activates prophage, threatening the stable operation of waste activated sludge anaerobic digestion. SciTotal Environ. 2021;768:144470.
  • Epstein SS. The phenomenon of microbial uncultivability. Curr Opin Microbiol. 2013;16(5):636–642.
  • Nakamura K, Tamaki H, Kang MS, et al. A six-well plate method: less laborious and effective method for cultivation of obligate anaerobic microorganisms. Microbes Environ. 2011;26(4):301–306.
  • Huang L-N, Zhou H, Chen Y-Q, et al. Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol Lett. 2002;214(2):235–240.
  • Wirth R, Kovács E, Maróti G, et al. Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels. 2012;5(1):41.
  • Friedrich MW. Methyl‐Coenzyme m reductase genes: unique functional markers for Methanogenic and anaerobic methane‐oxidizing archaea. In: Methods in enzymology. Vol. 397. California, USA: Academic Press; 2005.
  • Chin K-J, Lukow T, Conrad R. Effect of temperature on structure and function of the Methanogenic archaeal community in an anoxic rice field soil. Appl Environ Microbiol. 1999;65(6):2341–2349.
  • Lueders T, Friedrich M. Archaeal population dynamics during sequential reduction processes in rice field soil. Appl Environ Microbiol. 2000;66(7):2732–2742.
  • Hallam Steven J, Girguis Peter R, Preston Christina M, et al. Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol. 2003;69(9):5483–5491.
  • Lehmacher A, Klenk H-P. Characterization and phylogeny of mcrII, a gene cluster encoding an isoenzyme of methyl coenzyme M reductase from hyperthermophilic Methanothermus fervidus. Mol Gen Genet MGG. 1994;243(2):198–206.
  • Nölling J, Elfner A, Palmer JR, et al. Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Evol Microbiol. 1996;46:1170–1173.
  • Juottonen H, Galand PE, Yrjälä K. Detection of methanogenic Archaea in peat: comparison of PCR primers targeting the mcrA gene. Res Microbiol. 2006;157(10):914–921.
  • Lueders T, Chin K-J, Conrad R, et al. Molecular analyses of methyl-coenzyme M reductase α-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol. 2001;3(3):194–204.
  • Nunoura T, Oida H, Miyazaki J, et al. Quantification of mcrA by fluorescent PCR in methanogenic and methanotrophic microbial communities. FEMS Microbiol Ecol. 2008;64(2):240–247.
  • Woraruthai T, Kunno J, Pongsopon M, et al. Identification and cultivation of hydrogenotrophic methanogens from palm oil mill effluent for high methane production. Int J Energy Res. 2020;44(13):10058–10070.
  • Pohland F, Ghosh S. Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environ Lett. 1971;1(4):255–266. DOI:10.1080/00139307109434990
  • Harirchi S, Etemadifar Z, Yazdian F, et al. Efficacy of polyextremophilic Aeribacillus pallidus on bioprocessing of beet vinasse derived from ethanol industries. Bioresour Technol. 2020;313:123662.
  • Hosseini Koupaie E, Dahadha S, Bazyar Lakeh AA, et al. Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production-A review. J Environ Manage. 2019;233:774–784.
  • Mudhoo A. Biogas production: pretreatment methods in anaerobic digestion. New Jersey, USA: Wiley; 2012.
  • Tabatabaei M, Aghbashlo M, Valijanian E, et al. A comprehensive review on recent biological innovations to improve biogas production, Part 1: upstream strategies. Renewable Energy. 2020a;146:1204–1220.
  • Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: a review. Bioresour Technol. 2008;99(10):4044–4064.
  • Hejnfelt A, Angelidaki I. Anaerobic digestion of slaughterhouse by-products. Biomass Bioenergy. 2009;33(8):1046–1054.
  • Kayhanian M. Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ Technol. 1999;20(4):355–365.
  • Christou ML, Vasileiadis S, Kalamaras SD, et al. Ammonia-induced inhibition of manure-based continuous biomethanation process under different organic loading rates and associated microbial community dynamics. Bioresour Technol. 2021;320:124323.
  • Gallert C, Bauer S, Winter J. Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Appl Microbiol Biotechnol. 1998;50(4):495–501.
  • Jiang Y, Mcadam E, Zhang Y, et al. Ammonia inhibition and toxicity in anaerobic digestion: a critical review. Journal of Water Process Engineering. 2019;32:100899.
  • LIU C-F, Yuan X-Z, Zeng G-M, et al. Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresour Technol. 2008;99(4):882–888.
  • Molnar L, Bartha I. Factors influencing solid-state anaerobic digestion. Biol wastes. 1989;28(1):15–24. DOI:10.1016/0269-7483(89)90045-1
  • Wittmann C, Zeng A-P, Deckwer W-D. Growth inhibition by ammonia and use of a pH-controlled feeding strategy for the effective cultivation of mycobacterium chlorophenolicum. Appl Microbiol Biotechnol. 1995;44(3–4):519–525.
  • Borja R, Sánchez E, Duran M. Effect of the clay mineral zeolite on ammonia inhibition of anaerobic thermophilic reactors treating cattle manure. J Environ Sci Health Part A. 1996a;31:479–500.
  • Robbins J, Gerhardt S, Kappel T. Effects of total ammonia on anaerobic digestion and an example of digestor performance from cattle manure-protein mixtures. Biol Wastes. 1989;27(1):1–14. DOI:10.1016/0269-7483(89)90026-8
  • Angelidaki I, Ahring B. Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res. 1994;28(3):727–731.
  • Kroeker E, Schulte D, Sparling A, et al. Anaerobic treatment process stability. Journal (Water Pollution Control Federation). 1979;51(4) :718–727.
  • LIU T, Sung S. Ammonia inhibition on thermophilic aceticlastic methanogens. Water Sci Technol. 2002;45(10):113–120.
  • Bujoczek G, Oleszkiewicz J, Sparling R, et al. High solid anaerobic digestion of chicken manure. J Agric Eng Res. 2000;76(1):51–60. DOI:10.1006/jaer.2000.0529
  • Sung S, LIU T. Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere. 2003;53(1):43–52.
  • Hansen KH, Angelidaki I, Ahring BK. Improving thermophilic anaerobic digestion of swine manure. Water Res. 1999;33(8):1805–1810.
  • Borja R, Sánchez E, Weiland P. Influence of ammonia concentration on thermophilic anaerobic digestion of cattle manure in upflow anaerobic sludge blanket (UASB) reactors. Process Biochem. 1996b;31(5):477–483.
  • Parkin G, Speece R, and Yang C, et al. Response of methane fermentation systems to industrial toxicants. Journal (Water Pollution Control Federation). 1983;55(1):44–53.
  • Hendriksen HV, Ahring BK. Effects of ammonia on growth and morphology of thermophilic hydrogen-oxidizing methanogenic bacteria. FEMS Microbiol Lett. 1991;85(3):241–245.
  • Peris Serrano R. Biogas process simulation using Aspen Plus. Master, Syddansk Universitet; 2010.
  • Oleszkiewicz J, Marstaller T, Mccartney D. Effects of pH on sulfide toxicity to anaerobic processes. Environ Technol. 1989;10:815–822.
  • Harada H, Uemura S, Momonoi K. Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Res. 1994;28(2):355–367.
  • Colleran E, Pender S, Philpott U, et al. Full-scale and laboratory-scale anaerobic treatment of citric acid production wastewater. Biodegradation. 1998;9(3/4):233–245.
  • Grady Jr CL, Daigger GT, Love NG, et al. Biological wastewater treatment. London, UK: CRC press; 2011.
  • Soto M, Méndez R, Lema J. Methanogenic and non-methanogenic activity tests. Theoretical basis and experimental set up. Water Res. 1993;27(8):1361–1376.
  • Yerkes D, Boonyakitsombut S, Speece R. Antagonism of sodium toxicity by the compatible solute betaine in anaerobic methanogenic systems. Water Sci Technol. 1997;36(6–7):15–24.
  • Vallee BL, Ulmer DD. Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem. 1972;41(1):91–128.
  • Kohanski MA, Dwyer DJ, Hayete B, et al. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130(5):797–810.
  • Cetecioglu Z, Ince B, Orhon D, et al. Acute inhibitory impact of antimicrobials on acetoclastic methanogenic activity. Bioresour Technol. 2012;114:109–116.
  • Chen H, Zeng X, Zhou Y, et al. Influence of roxithromycin as antibiotic residue on volatile fatty acids recovery in anaerobic fermentation of waste activated sludge. J Hazard Mater. 2020;394:122570.
  • Tian Z, Zhang Y, Yang M. Chronic impacts of oxytetracycline on mesophilic anaerobic digestion of excess sludge: inhibition of hydrolytic acidification and enrichment of antibiotic resistome. Environ Pollut. 2018;238:1017–1026.
  • Bruni C, Foglia A, Eusebi AL, et al. Targeted bio-based volatile fatty acid production from waste streams through anaerobic fermentation: link between process parameters and operating scale. ACS Sustain Chem Eng. 2021;9(30):9970–9987.
  • Wainaina S, Awasthi MK, Horváth IS, et al. Anaerobic digestion of food waste to volatile fatty acids and hydrogen at high organic loading rates in immersed membrane bioreactors. Renewable Energy. 2020;152:1140–1148.
  • Mwene-mbeja TM, Dufour A, Lecka J, et al. Enzymatic reactions in the production of biomethane from organic waste. Enzyme Microb Technol. 2020;132:109410.
  • Hunter SM, Blanco E, Borrion A. Expanding the anaerobic digestion map: a review of intermediates in the digestion of food waste. SciTotal Environ. 2021;767:144265.
  • Kumar G, Ponnusamy VK, Bhosale RR, et al. A review on the conversion of volatile fatty acids to polyhydroxyalkanoates using dark fermentative effluents from hydrogen production. Bioresour Technol. 2019;287:121427.
  • LÜ F, Wang Z, Zhang H, et al. Anaerobic digestion of organic waste: recovery of value-added and inhibitory compounds from liquid fraction of digestate. Bioresour Technol. 2021;333:125196.
  • Qin S, Wainaina S, LIU H, et al. Microbial dynamics during anaerobic digestion of sewage sludge combined with food waste at high organic loading rates in immersed membrane bioreactors. Fuel. 2021;303:121276.
  • SUN J, Zhang L, LOH K-C. Review and perspectives of enhanced volatile fatty acids production from acidogenic fermentation of lignocellulosic biomass wastes. Bioresources Bioprocess. 2021;8(1):68.
  • Bhatia SK, Yang Y-H. Microbial production of volatile fatty acids: current status and future perspectives. Rev Environ Sci Bio/Technol. 2017;16(2):327–345.
  • Feng K, LI H, Zheng C. Shifting product spectrum by pH adjustment during long-term continuous anaerobic fermentation of food waste. Bioresour Technol. 2018;270:180–188.
  • Joubert W, Britz T. Characterization of aerobic, facultative anaerobic, and anaerobic bacteria in an acidogenic phase reactor and their metabolite formation. Microb Ecol. 1987;13(2):159–168.
  • Hania WB, Bouanane-darenfed A, Cayol J-L, et al. Reclassification of anaerobaculum mobile, anaerobaculum thermoterrenum, anaerobaculum hydrogeniformans as acetomicrobium mobile comb. Nov., acetomicrobium thermoterrenum comb. Nov. and acetomicrobium hydrogeniformans comb. Nov., respectively, and emendation of the genus acetomicrobium. Int J Syst Evol Microbiol. 2016;66(3):1506–1509.
  • Merli G, Becci A, Amato A, et al. Acetic acid bioproduction: the technological innovation change. SciTotal Environ. 2021;798:149292.
  • Nayak J, PAL P. Transforming waste cheese-whey into acetic acid through a continuous membrane-integrated hybrid process. Ind Eng Chem Res. 2013;52(8):2977–2984.
  • Noman AE, Al-barha NS, Sharaf -A-AM, et al. A novel strain of acetic acid bacteria Gluconobacter oxydans FBFS97 involved in riboflavin production. Sci Rep. 2020;10(1):1–17.
  • Tang I-C, Yang S-T, Okos MR. Acetic acid production from whey lactose by the co-culture of streptococcus lactis and clostridium formicoaceticum. Appl Microbiol Biotechnol. 1988;28(2):138–143.
  • Wang Z, YAN M, Chen X, et al. Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus for acetic acid production. Biochem Eng J. 2013;79:41–45.
  • Huang YL, Mann K, Novak JM, et al. Acetic acid production from fructose by clostridium formicoaceticum immobilized in a fibrous-Bed bioreactor. Biotechnol Prog. 1998;14(5):800–806.
  • Ragsdale SW, Pierce E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta Proteins Proteom. 2008;1784:1873–1898.
  • DU G, LIU L, Chen J. White biotechnology for organic acids. In: Pandey A, Höfer R, Taherzadeh M, et al., editors. Industrial biorefineries & white biotechnology. Amsterdam: Elsevier; 2015. p. 409–444.
  • Wainaina S, Lukitawesa, Kumar Awasthi M, Taherzadeh MJ. Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered. 2019a;10(1):437–458.
  • Yang ST, El-ensashy H, Thongchul N. Bioprocessing technologies in biorefinery for sustainable production of fuels, chemicals, and polymers. New Jersey, USA: Wiley; 2013.
  • Atasoy M, Owusu-agyeman I, Plaza E, et al. Bio-based volatile fatty acid production and recovery from waste streams: current status and future challenges. Bioresour Technol. 2018;268:773–786.
  • Duncan SH, Barcenilla A, Stewart CS, et al. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol. 2002;68(10):5186–5190.
  • Jang Y-S, WOO HM, IM JA, et al. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Appl Microbiol Biotechnol. 2013;97(21):9355–9363.
  • Jankowska E, Duber A, Chwialkowska J, et al. Conversion of organic waste into volatile fatty acids–The influence of process operating parameters. Chem Eng J. 2018;345:395–403.
  • Tsapekos P, Kougias P, Treu L, et al. Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production. Appl Energy. 2017;185:126–135.
  • Jie W, Peng Y, REN N, et al. Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs. Bioresour Technol. 2014;152:124–129.
  • Rossl F, Torriani S, Dellaglio F. Identification and clustering of dairy propionibacteria by RAPD‐PCR and CGE‐REA methods. J Appl Microbiol. 1998;85(6):956–964.
  • Wang X, LI X, Zhao C, et al. Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows. Appl Environ Microbiol. 2012;78(7):2386–2392.
  • Atasoy M, Cetecioglu Z. Butyric acid dominant volatile fatty acids production: bio-augmentation of mixed culture fermentation by clostridium butyricum. J Environ Chem Eng. 2020;8(6):104496.
  • LUO J, Huang W, Zhang Q, et al. Distinct effects of hypochlorite types on the reduction of antibiotic resistance genes during waste activated sludge fermentation: insights of bacterial community, cellular activity, and genetic expression. J Hazard Mater. 2021;403:124010.
  • Wang L, Zhang G, LI Y, et al. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals. 2020;10(2):223.
  • Wainaina S, Parchami M, Mahboubi A, et al. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor. Bioresour Technol. 2019b;274:329–334.
  • Chen Y, Jiang X, Xiao K, et al. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase–Investigation on dissolved organic matter transformation and microbial community shift. Water Res. 2017;112:261–268.
  • LIU H, Xiao H, YIN B, et al. Enhanced volatile fatty acid production by a modified biological pretreatment in anaerobic fermentation of waste activated sludge. Chem Eng J. 2016;284:194–201.
  • Chen Y, LUO J, YAN Y, et al. Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Appl Energy. 2013;102:1197–1204.
  • Feng L, Chen Y, Zheng X. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Environ Sci Technol. 2009;43(12):4373–4380.
  • LEE J, Koo T, HAN G, et al. Anaerobic digestion of cattle offal: protein and lipid-rich substrate degradation and population dynamics of acidogens and methanogens. Bioprocess Biosyst Eng. 2015;38(12):2349–2360.
  • YIN J, YU X, Wang K, et al. Acidogenic fermentation of the main substrates of food waste to produce volatile fatty acids. Int J Hydrogen Energy. 2016;41:21713–21720.
  • Jankowska E, Chwialkowska J, Stodolny M, et al. Volatile fatty acids production during mixed culture fermentation–The impact of substrate complexity and pH. Chem Eng J. 2017;326:901–910.
  • Tabatabaei M, Aghbashlo M, Valijanian E, et al. A comprehensive review on recent biological innovations to improve biogas production, Part 2: mainstream and downstream strategies. Renewable Energy. 2020b;146:1392–1407.
  • Kurniawan T, Hanifah I, Wikandari R, et al. Semi-continuous reverse membrane bioreactor in two-stage anaerobic digestion of citrus waste. Materials. 2018;11(8):1341.
  • LIU H, Wang J, LIU X, et al. Acidogenic fermentation of proteinaceous sewage sludge: effect of pH. Water Res. 2012;46(3):799–807.
  • Jiang J, Zhang Y, LI K, et al. Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour Technol. 2013;143:525–530.
  • Zhang B, Zhang L, Zhang S, et al. The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ Technol. 2005;26:329–340.
  • Yuan H, Chen Y, Zhang H, et al. Improved bioproduction of short-chain fatty acids (SCFAs) from excess sludge under alkaline conditions. Environ Sci Technol. 2006;40:2025–2029.
  • Cai M, LIU J, WEI Y. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment. Environ Sci Technol. 2004;38(11):3195–3202.
  • Wang K, YIN J, Shen D, et al. Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresour Technol. 2014;161:395–401.
  • Dinamarca S, Aroca G, Chamy R, et al. The influence of pH in the hydrolytic stage of anaerobic digestion of the organic fraction of urban solid waste. Water Sci Technol. 2003;48(6):249–254.
  • Singhania RR, Patel AK, Christophe G, et al. Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour Technol. 2013;145:166–174.
  • HE M, SUN Y, Zou D, et al. Influence of temperature on hydrolysis acidification of food waste. Procedia Environ Sci. 2012;16:85–94.
  • Dichtl N. Thermophilic and mesophilic (two‐stage) anaerobic digestion. Water Environ J. 1997;11(2):98–104. DOI:10.1111/j.1747-6593.1997.tb00098.x
  • HE X, YIN J, LIU J, et al. Characteristics of acidogenic fermentation for volatile fatty acid production from food waste at high concentrations of NaCl. Bioresour Technol. 2019;271:244–250.
  • KIM D-H, KIM S-H, Shin H-S. Sodium inhibition of fermentative hydrogen production. Int J Hydrogen Energy. 2009;34(8):3295–3304.
  • YU H, Fang HH. Inhibition by chromium and cadmium of anaerobic acidogenesis. Water Sci Technol. 2001;43:267–274.
  • Chai WS, BAO Y, Jin P, et al. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew Sust Energ Rev. 2021;147:111254.
  • Nissilä ME, LAY C-H, Puhakka JA. Dark fermentative hydrogen production from lignocellulosic hydrolyzates – a review. Biomass Bioenergy. 2014;67:145–159.
  • Sivagurunathan P, Kumar G, Bakonyi P, et al. A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int J Hydrogen Energy. 2016;41(6):3820–3836.
  • Hallenbeck PC, Benemann JR. Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy. 2002;27(11–12):1185–1193.
  • Hawkins AS, HAN Y, Lian H, et al. Extremely thermophilic routes to microbial electrofuels. ACS Catal. 2011;1(9):1043–1050.
  • Ruggeri B, Tommasi T, Sanfilippo S. BioH2 & Bioch4 through anaerobic digestion: from research to full-scale applications. London, UK: Springer; 2015.
  • De La Rubia MA, Raposo F, Rincón B, et al. Evaluation of the hydrolytic–acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake. Bioresour Technol. 2009;100(18):4133–4138.
  • LIN C-Y, Chai WS, LAY C-H, et al. Optimization of hydrolysis-acidogenesis phase of swine manure for biogas production using two-stage anaerobic fermentation. Processes. 2021;9(8):1324.
  • Moscoviz R, Toledo-alarcón J, Trably E, et al. Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol. 2016;34(11):856–865.
  • Lütke-eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol. 2011;22(5):634–647.
  • Ramírez-morales JE, Tapia-venegas E, Toledo-alarcón J, et al. Simultaneous production and separation of biohydrogen in mixed culture systems by continuous dark fermentation. Water Sci Technol. 2015;71(9):1271–1285.
  • Mandal B, Nath K, DAS D. Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotechnol Lett. 2006;28(11):831–835.
  • Nath K, DAS D. Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol. 2004;65(5):520–529.
  • Goyal Y, Kumar M, Gayen K. Metabolic engineering for enhanced hydrogen production: a review. Can J Microbiol. 2013;59(2):59–78.
  • OH Y-K, Seol E-H, KIM JR, et al. Fermentative biohydrogen production by a new chemoheterotrophic bacterium citrobacter sp. Y19. Int J Hydrogen Energy. 2003;28(12):1353–1359.
  • REN N, CAO G, Wang A, et al. Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy. 2008;33(21):6124–6132.
  • Tapia-venegas E, Ramirez-morales JE, Silva-illanes F, et al. Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Rev Environ Sci Bio/Technol. 2015;14(4):761–785.
  • ZHU H, Béland M. Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. Int J Hydrogen Energy. 2006;31:1980–1988.
  • Cappelletti M, Zannoni D, Postec A, et al. Members of the order Thermotogales: from microbiology to hydrogen production. In: Zannoni D, De PhilippisR. Microbial bioenergy: hydrogen production. Dordrecht, Netherlands: Springer; 2014. p. 197–224.
  • Ivanova G, Rakhely G, Kovacs KL. Hydrogen production from biopolymers by Caldicellulosiruptor saccharolyticus and stabilization of the system by immobilization. Int J Hydrogen Energy. 2008;33(23):6953–6961.
  • HU B, Chen S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. Int J Hydrogen Energy. 2007;32(15):3266–3273.
  • Petre M. Environmental biotechnology: new approaches and prospective applications. London, UK: IntechOpen; 2013.
  • Yang H, Shen J. Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. Int J Hydrogen Energy. 2006;31(15):2137–2146.
  • Cabrol L, Marone A, Tapia-venegas E, et al. Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol Rev. 2017;41(2):158–181.
  • Kumar G, Mathimani T, Sivaramakrishnan R, et al. Application of molecular techniques in biohydrogen production as a clean fuel. SciTotal Environ. 2020;722:137795.
  • Tolvanen KE, Karp MT. Molecular methods for characterizing mixed microbial communities in hydrogen-fermenting systems. Int J Hydrogen Energy. 2011;36(9):5280–5288.
  • Cheng C-H, Hsu S-C, WU C-H, et al. Quantitative analysis of microorganism composition in a pilot-scale fermentative biohydrogen production system. Int J Hydrogen Energy. 2011;36(21):14153–14161.
  • Goud RK, Raghavulu SV, Mohanakrishna G, et al. Predominance of bacilli and clostridia in microbial community of biohydrogen producing biofilm sustained under diverse acidogenic operating conditions. Int J Hydrogen Energy. 2012;37(5):4068–4076.
  • Hung C-H, Cheng C-H, Cheng L-H, et al. Application of Clostridium-specific PCR primers on the analysis of dark fermentation hydrogen-producing bacterial community. Int J Hydrogen Energy. 2008;33(5):1586–1592.
  • Chang -J-J, Chen W-E, Shih S-Y, et al. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR. Appl Microbiol Biotechnol. 2006;70(5):598–604.
  • Chang -J-J, WU J-H, WEN F-S, et al. Molecular monitoring of microbes in a continuous hydrogen-producing system with different hydraulic retention time. Int J Hydrogen Energy. 2008;33(5):1579–1585.
  • Tolvanen KE, Koskinen PE, Ylikoski AI, et al. Quantitative monitoring of a hydrogen-producing Clostridium butyricum strain from a continuous-flow, mixed culture bioreactor employing real-time PCR. Int J Hydrogen Energy. 2008;33(2):542–549.
  • Fuess LT, Júnior ADNF, Machado CB, et al. Temporal dynamics and metabolic correlation between lactate-producing and hydrogen-producing bacteria in sugarcane vinasse dark fermentation: the key role of lactate. Bioresour Technol. 2018;247:426–433.
  • KIM D-H, Jang S, Yun Y-M, et al. Effect of acid-pretreatment on hydrogen fermentation of food waste: microbial community analysis by next generation sequencing. Int J Hydrogen Energy. 2014;39(29):16302–16309.
  • Favaro L, Alibardi L, Lavagnolo MC, et al. Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste. Int J Hydrogen Energy. 2013;38(27):11774–11779.
  • Guo XM, Trably E, Latrille E, et al. Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy. 2010;35(19):10660–10673.
  • Valdez-vazquez I, Poggi-varaldo HM. Hydrogen production by fermentative consortia. Renew Sust Energ Rev. 2009;13(5):1000–1013.
  • Crow DR. Principles and applications of electrochemistry. Florida, USA: Routledge; 1994.
  • Lalman JA, Bagley DM. Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Res. 2001;35:2975–2983.
  • Saady NMC. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrogen Energy. 2013;38(30):13172–13191.
  • Diekert G, Wohlfarth G. Metabolism of homoacetogens. Antonie Van Leeuwenhoek. 1994;66(1–3):209–221.
  • Dhar BR, Elbeshbishy E, Nakhla G. Influence of iron on sulfide inhibition in dark biohydrogen fermentation. Bioresour Technol. 2012;126:123–130.
  • Mohan SV, Mohanakrishna G, Goud RK, et al. Acidogenic fermentation of vegetable based market waste to harness biohydrogen with simultaneous stabilization. Bioresour Technol. 2009;100(12):3061–3068.
  • KIM M-S, LEE D-Y. Fermentative hydrogen production from tofu-processing waste and anaerobic digester sludge using microbial consortium. Bioresour Technol. 2010;101(1):S48–S52.
  • Braun R.Potential of Co-digestion. Rep IEA Bioenergy Task; 2002. (Report no. 37).
  • Luste S, Luostarinen S. Anaerobic co-digestion of meat-processing by-products and sewage sludge–Effect of hygienization and organic loading rate. Bioresour Technol. 2010;101(8):2657–2664.
  • KIM S, Choi K, KIM J-O, et al. Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies. Biodegradation. 2013;24(6):753–764.
  • Chong M-L, Sabaratnam V, Shirai Y, et al. Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrogen Energy. 2009a;34(8):3277–3287.
  • Sinha P, Pandey A. An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrogen Energy. 2011;36(13):7460–7478.
  • LI C, Fang HH. Inhibition of heavy metals on fermentative hydrogen production by granular sludge. Chemosphere. 2007;67(4):668–673.
  • BAO M, SU H, TAN T. Dark fermentative bio-hydrogen production: effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel. 2013;112:38–44.
  • Angenent LT, Karim K, Al-dahhan MH, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 2004;22(9):477–485.
  • Dong L, Zhenhong Y, Yongming S, et al. Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrogen Energy. 2009;34(2):812–820.
  • Van Niel EW, Claassen PA, Stams AJ. Substrate and product inhibition of hydrogen production by the extreme thermophile, Caldicellulosiruptor saccharolyticus. Biotechnol Bioeng. 2003;81(3):255–262.
  • Ciranna A, Ferrari R, Santala V, et al. Inhibitory effects of substrate and soluble end products on biohydrogen production of the alkalithermophile Caloramator celer: kinetic, metabolic and transcription analyses. Int J Hydrogen Energy. 2014;39(12):6391–6401.
  • Wong YM, WU TY, Juan JC. A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew Sust Energ Rev. 2014;34:471–482.
  • Chong M-L, Yee PL, Abd Aziz S, et al. Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6. Int J Hydrogen Energy. 2009b;34(21):8859–8865.
  • Millat T, Janssen H, Bahl H, et al. The pH-induced metabolic shift from acidogenesis to solventogenesis in Clostridium acetobutylicum- from experiments to models. Proceedings of the Experimental Standard Conditions of Enzyme Characterization; 2011; Rudesheim/Rhein, Germany. 2013.
  • Varjani S, Shah AV, Vyas S, et al. Processes and prospects on valorizing solid waste for the production of valuable products employing bio-routes: a systematic review. Chemosphere. 2021;282:130954.
  • Fermoso FG, Van Hullebusch E, Collins G, et al. Trace elements in anaerobic biotechnologies. London, UK: IWA Publishing; 2019.
  • WID N, Selaman R, Jopony M. Enhancing phosphorus recovery from different wastes by using anaerobic digestion technique. Adv Sci Lett. 2017;23(2):1437–1439.
  • Chong CC, Cheng YW, Ishak S, et al. Anaerobic digestate as a low-cost nutrient source for sustainable microalgae cultivation: a way forward through waste valorization approach. SciTotal Environ. 2022;803:150070.
  • SHI L-D, LV P-L, Wang M, et al. A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction. SciTotal Environ. 2020;732:139310.
  • Devda V, Chaudhary K, Varjani S, et al. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered. 2021;12(1):4697–4718.
  • WU J-Y, LAY C-H, Chia SR, et al. Economic potential of bioremediation using immobilized microalgae-based microbial fuel cells. Clean Technol Envir. 2021;23:2251–2264.
  • Wang G, WEI L, CAO C, et al. Novel resolution-contrast method employed for investigating electron transfer mechanism of the mixed bacteria microbial fuel cell. Int J Hydrogen Energy. 2017;42(16):11614–11621.
  • Bayané A, Guiot SR. Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass. Rev Environ Sci Bio/Technol. 2011;10(1):43–62.
  • Barnes S, Keller J. Cellulosic waste degradation by rumen-enhanced anaerobic digestion. Water Sci Technol. 2003;48(4):155–162.
  • Kaplan-shabtai V, Indugu N,Hennessy ML, et al. Using structural equation modeling to understand interactions between bacterial and archaeal populations and volatile fatty acid proportions in the rumen. Front Microbiol. 2021;12:1457.
  • Nguyen LN, Nguyen AQ, Johir MAH, et al. Application of rumen and anaerobic sludge microbes for bio harvesting from lignocellulosic biomass. Chemosphere. 2019;228:702–708.
  • Takizawa S, Baba Y, Tada C, et al. Pretreatment with rumen fluid improves methane production in the anaerobic digestion of paper sludge. Waste Manage. 2018;78:379–384.
  • YUE Z-B, LI -W-W, YU H-Q. Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass. Bioresour Technol. 2013;128:738–744.
  • Zhao B-H, YUE Z-B, NI B-J, et al. Modeling anaerobic digestion of aquatic plants by rumen cultures: cattail as an example. Water Res. 2009;43:2047–2055.
  • HU ZH, YU HQ. Anaerobic digestion of cattail by rumen cultures. Waste Manag. 2006;26(11):1222–1228.
  • Choudhury PK, Salem AZM, Jena R. Rumen microbiology: An overview. In: Puniya AK, Singh R, Kamra DN, et al., editors. Rumen microbiology: from evolution to revolution. New Delhi, India: Springer; 2015.
  • Liang J, Fang W, Wang Q, et al. Metagenomic analysis of community, enzymes and metabolic pathways during corn straw fermentation with rumen microorganisms for volatile fatty acid production. Bioresour Technol. 2021a;342:126004.
  • Sirohi SK, Singh N, Dagar SS, et al. Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol. 2012;95(5):1135–1154.
  • Belanche A, Palma-hidalgo JM, Nejjam I, et al. In vit assessment of the factors that determine the activity of the rumen microbiota for further applications as inoculum. J Sci Food Agric. 2019;99(1):163–172.
  • Rico JL, Reardon KF, De Long SK. Inoculum microbiome composition impacts fatty acid product profile from cellulosic feedstock. Bioresour Technol. 2021;323:124532.
  • Boone DR, Garrity G, Castenholz RW. Bergey’s manual of systematic bacteriology: volume one: the archaea and the deeply branching and phototrophic bacteria. New York: Springer; 2011.
  • Sakai S, Imachi H, Hanada S, et al. Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first isolate of the lineage ‘Rice Cluster I’, and proposal of the new archaeal order Methanocellales ord. nov. Int J Syst Evol Microbiol. 2008;58(4):929–936.
  • Dridi B, Fardeau M-L, Ollivier B, et al. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol. 2012;62(Pt_8):1902–1907.
  • Kurr M, Huber R, König H, et al. Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol. 1991;156(4):239–247.
  • Meile L, Abendschein P, Leisinger T. Transduction in the archaebacterium Methanobacterium thermoautotrophicum Marburg. J Bacteriol. 1990;172(6):3507–3508.
  • LUO Y, Pfister P, Leisinger T, et al. The genome of archaeal prophage ψm100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J Bacteriol. 2001;183(19):5788–5792.
  • Nölling J, Groffen A, De Vos WM. φ F1 and φF3, two novel virulent, archaeal phages infecting different thermophilic strains of the genus Methanobacterium. Microbiology. 1993;139:2511–2516.
  • Chan C, LAU S, Husaini A, et al. Identification of methane-producing bacteria from palm oil mill sludge (POMS) with solid cud from ruminant stomach. J Biochem, Microbiol Biotechnol. 2014;2:23–26.
  • Van Eerten-jansen MCAA, Veldhoen AB, Plugge CM, et al. Microbial community analysis of a methane-producing biocathode in a bioelectrochemical system. Archaea. 2013;2013:481784.
  • ZHU C, Zhang J, Tang Y, et al. Diversity of methanogenic archaea in a biogas reactor fed with swine feces as the mono-substrate by mcrA analysis. Microbiol Res. 2011;166:27–35.
  • Luton PE, Wayne JM, Sharp RJ, et al. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfillbbThe GenBank accession numbers for the mcrA sequences reported in this paper are AF414034–AF414051 (See Fig. 2) and AF414007–AF414033 (environmental isolates in Fig. 3). Microbiology. 2002;148(Pt 11):3521–3530.
  • Ueno Y, Haruta S, Ishii M, et al. Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora. J Biosci Bioeng. 2001;92(4):397–400.
  • Hung C-H, LEE K-S, Cheng L-H, et al. Quantitative analysis of a high-rate hydrogen-producing microbial community in anaerobic agitated granular sludge bed bioreactors using glucose as substrate. Appl Microbiol Biotechnol. 2007;75(3):693–701.
  • Wang X, Hoefel D, Saint C, et al. The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge. J Appl Microbiol. 2007;103(5):1415–1423.
  • Yanling Y, Zhenmei L, Hang M, et al. Dynamic changes of microbial community diversity in a photohydrogen producing reactor monitored by PCR-DGGE. J Environ Sci. 2008;20(9):1118–1125.
  • Cheng C-H, Hung C-H, LEE K-S, et al. Microbial community structure of a starch-feeding fermentative hydrogen production reactor operated under different incubation conditions. Int J Hydrogen Energy. 2008;33(19):5242–5249.
  • Davila-vazquez G, De León-rodríguez A, Alatriste-mondragón F, et al. The buffer composition impacts the hydrogen production and the microbial community composition in non-axenic cultures. Biomass Bioenergy. 2011;35(7):3174–3181.
  • Chen -C-C, Chuang Y-S, LIN C-Y, et al. Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int J Hydrogen Energy. 2012;37(20):15540–15546.
  • Poleto L, Souza P, Magrini FE, et al. Selection and identification of microorganisms present in the treatment of wastewater and activated sludge to produce biohydrogen from glycerol. Int J Hydrogen Energy. 2016;41(7):4374–4381.
  • JO JH, Jeon CO, LEE DS, et al. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi. J Biotechnol. 2007;131(3):300–308.
  • NIU M, Liang W, Wang F. Methane biotransformation in the ocean and its effects on climate change: a review. Sci China Earth Sci. 2018;61(12):1697–1713.