12,363
Views
57
CrossRef citations to date
0
Altmetric
Review

Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction

, , &
Pages 4923-4938 | Received 23 Nov 2021, Accepted 29 Jan 2022, Published online: 14 Feb 2022

References

  • Sharma A, Kapoor D, Wang J, et al. Chromium bioaccumulation and its impacts on plants: an overview. Plants. 2020a;9(1):100.
  • Jiang B, Liu Y, Zheng J, et al. Synergetic transformations of multiple pollutants driven by Cr (VI)–sulfite reactions. Environ Sci Technol. 2015;49(20):12363–12371.
  • Liang J, Huang X, Yan J, et al. A review of the formation of Cr(VI) via Cr(III) oxidation in soils and groundwater. SciTotal Environ. 2021;774:145762.
  • Kazakis N, Kougias I, Patsialis T. Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: application in Rhodope–Evros region, Greece. SciTotal Environ. 2015;538:555–563.
  • Oze C, Bird DK, Fendorf S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc Nat Acad Sci. 2007;104(16):6544–6549.
  • Vengosh A, Jackson RB, Warner N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ Sci Technol. 2014;48(15):8334–8348.
  • Ball JW, Izbicki JA. Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California. Appl Geochem. 2004;19(7):1123–1135.
  • Manning P, de Vries FT, Tallowin JRB, et al. Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks. J Appl Ecol. 2015;52(5):1188–1196.
  • Bourotte C, Bertolo R, Almodovar M, et al. Natural occurrence of hexavalent chromium in a sedimentary aquifer in Urânia, State of São Paulo, Brazil. Anais da Academia Brasileira de Ciências. 2009;81(2):227–242.
  • Tziritis E, Kelepertzis E, Korres G, et al. Hexavalent chromium contamination in groundwaters of Thiva basin, central Greece. Bull Environ Contam Toxicol. 2012;89(5):1073–1077.
  • US EPA (US Environmental Protection Agency). Data summary of the third unregulated contaminant monitoring rule (UCMR 3). EPA 815-S-17-001. Washington: USEPA; 2017.
  • Moffat I, Martinova N, Seidel C, et al. Hexavalent chromium in drinking water. J Am water works assoc. 2018;110(5):E22–E35.
  • Fathima NN, Aravindhan R, Rao JR, et al. Solid waste removes toxic liquid waste: adsorption of chromium (VI) by iron complexed protein waste. Environ Sci Technol. 2005;39(8):2804–2810.
  • Abdulla HM, Kamal EM, and Mohamed AH, et al., 2010. Chromium removal from tannery wastewater using chemical and biological techniques aiming at zero discharge of pollution. In Proceeding of Fifth Scientific Environmental Conference. Zagazig University, Egypt. (pp. 171–183).
  • Kocaoba S, Akcin G. Removal and recovery of chromium and chromium speciation with MINTEQA2. Talanta. 2002;57(1):23–30.
  • Komori K, Rivas A, Toda K, et al. A method for removal of toxic chromium using dialysis-sac cultures of a chromate-reducing strain of Enterobacter cloacae. Appl Microbiol Biotechnol. 1990;33(1):117–119.
  • Poopal AC, Laxman RS. Studies on biological reduction of chromate by Streptomyces griseus. J Hazard Mater. 2009;169(1–3):539–545.
  • Yasmeen S, Kabiraz MK, Saha B, et al. Chromium (VI) ions removal from tannery effluent using chitosan-microcrystalline cellulose composite as adsorbent. Int Res J Pure Appl Chem. 2016;1–14. DOI:10.9734/IRJPAC/2016/23315
  • El Nemr A. Pomegranate husk as an adsorbent in the removal of toxic chromium from wastewater. Chem Ecol. 2007;23(5):409–425.
  • Amir A, Abd Rahim RNR, Abdul-Talib S. Removal of chromium hexavalent using agriculture waste. Int J Environ Sci Dev. 2017;8(4):260.
  • Stoller M, Sacco O, Vilardi G, et al., 2017. Chromium recovery by membranes for process reuse in the tannery industry. In 15th international conference on environmental science and technology, Rhodes.
  • Payel S, Sarker M, and Hashem MA, 2018, February. Banana rachis charcoal to remove chromium from tannery wastewater. In 4th International Conference on Civil and Environmental Engineering for Sustainability (IConCEES 2017)4–5 December 2017, Langkawi, Malaysia (pp. 9–11).
  • Prado A, Moura A, Andrade R, et al. Application of Brazilian sawdust samples for chromium removal from tannery wastewater. J Therm Anal Calorim. 2010;99(2):681–687.
  • Wise JP Jr, Young JL, Cai J, et al. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. Environ Int. 2022;158:106877.
  • Sharma P, Purchase D, Chandra R. Residual pollutants in treated pulp paper mill wastewater and their phytotoxicity and cytotoxicity in Allium cepa. Environ Geochem Health. 2021a;43(5):2143–2164.
  • Sharma P, and Singh SP. Pollutants characterization and toxicity assessment of pulp and paper industry sludge for safe environmental disposal. In Ming H. Wong: Emerging Treatment Technologies for Waste Management. Singapore: Springer; 2021a. p. 207–223.
  • Sharma P, Tripathi S, Chandra R. Phytoremediation potential of heavy metal accumulator plants for waste management in the pulp and paper industry. Heliyon. 2020b;6(7):e04559.
  • Sharma P, Tripathi S, Chandra R. Highly efficient phytoremediation potential of metal and metalloids from the pulp paper industry waste employing Eclipta alba (L) and Alternanthera philoxeroide (L): biosorption and pollution reduction. Bioresour Technol. 2021b;319:124147.
  • Sharma P, Tripathi S, Chaturvedi P, et al. Newly isolated Bacillus sp. PS-6 assisted phytoremediation of heavy metals using Phragmites communis: potential application in wastewater treatment. Bioresour Technol. 2021c;320:124353.
  • Sharma P, Tripathi S, Chandra R. Metagenomic analysis for profiling of microbial communities and tolerance in metal-polluted pulp and paper industry wastewater. Bioresour Technol. 2021d;324:124681.
  • Sharma P, Pandey AK, Udayan A, et al. Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresour Technol. 2021e;326:124750.
  • Sharma P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: an update. Bioresour Technol. 2021a;328:124835.
  • Yang W, Song W, Li J, et al. Bioleaching of heavy metals from wastewater sludge with the aim of land application. Chemosphere. 2020;249:126134.
  • Shekhawat K, Chatterjee S, Joshi B. Chromium toxicity and its health hazards. Int J Adv Res. 2015;3(7):167–172.
  • Vendruscolo F, da Rocha Ferreira GL, Antoniosi Filho NR. Biosorption of hexavalent chromium by microorganisms. Int Biodeterior Biodegrad. 2017;119:87–95.
  • DesMarias TL, Costa M. Mechanisms of chromium-induced toxicity. Curr Opin Toxicol. 2019;14:1–7.
  • Junaid M, Hashmi MZ, Malik RN, et al. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: a review. Environ Sci Pollut Res. 2016;23(20):20151–20167.
  • Seidler A, Jähnichen S, Hegewald J, et al. Systematic review and quantification of respiratory cancer risk for occupational exposure to hexavalent chromium. Int Arch Occup Environ Health. 2013;86(8):943–955.
  • Focardi S, Pepi M, Focardi SE. Microbial reduction of hexavalent chromium as a mechanism of detoxification and possible bioremediation applications. Biodegrad Life Sci. 2013;321–347.
  • Al Osman M, Yang F, Massey IY. Exposure routes and health effects of heavy metals on children. Biometals. 2019;32(4):563–573.
  • Elahi A, Arooj I, Bukhari DA, et al. Successive use of microorganisms to remove chromium from wastewater. Appl Microbiol Biotechnol. 2020;104(9):3729–3743.
  • Cervantes C, Campos-García J, Devars S, et al. Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev. 2001;25(3):335–347.
  • Shanker AK, Cervantes C, Lozatavera H, et al. Chromium toxicity in plants. Environ Int. 2005;31(5):739–753.
  • Jobby R, Jha P, Yadav AK, et al. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: a comprehensive review. Chemosphere. 2018;207:255–266.
  • Sharma P, Tripathi S, Vadakedath N, et al. In-situ toxicity assessment of pulp and paper industry wastewater on Trigonella foenum-graecum L: potential source of cytotoxicity and chromosomal damage. Environ Technol Innovation. 2021d;21:101251.
  • Stambulska UY, Bayliak MM, Lushchak VI. Chromium(VI) toxicity in legume plants: modulation effects of rhizobial symbiosis. Biomed Res Int. 2018;2018:1–13.
  • Ina S. Chromium, an essential nutrient and pollutant: a review. Afr J Pure Appl Chem. 2013;7(9):310–317.
  • Guo S, Xiao C, Zhou N, et al. Speciation, toxicity, microbial remediation and phytoremediation of soil chromium contamination. Environ Chem Lett. 2021;19(2):1413–1431.
  • Van Hoeck V, Sonawane M, Sanchez ALG, et al. Chromium propionate improves performance and carcass traits in broilers. Anim Nutr. 2020;6(4):480–487.
  • Tran NT, Zhang J, Xiong F, et al. Altered gut microbiota associated with intestinal disease in grass carp (Ctenopharyngodon idellus). World J Microbiol Biotechnol. 2018;34(6):1–9.
  • Jin Y, Wu S, Zeng Z, et al. Effects of environmental pollutants on gut microbiota. Environ Pollut. 2017;222:1–9.
  • Li A, Liu B, and He Y, et al. Integrated bacterial and fungal diversity analysis reveals the gut microbial alterations in diarrheic giraffes. Front Microbiol. 2021;2241 12 1–15 .
  • Rahman Z, Thomas L. Chemical-assisted microbially mediated chromium (Cr) (VI) reduction under the influence of various electron donors, redox mediators, and other additives: an outlook on enhanced Cr(VI) removal. Front Microbiol. 2021;11:3503.
  • Sharma P, Rath SK. Potential applications of fungi in the remediation of toxic effluents from pulp and paper industries. In: Fungi bio-prospects in sustainable agriculture, environment and nano-technology. Academic Press; 2021. p. 193–211.
  • Sharma P, Kumar S, Pandey A. Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: a review. J Environ Chem Eng. 2021e;9(4):105684.
  • Sharma P, Pandey AK, Kim S-H, et al. Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater. Environ Technol Innovation. 2021f;24:101826.
  • Sharma P, Tripathi S, Purchase D, et al. Integrating phytoremediation into treatment of pulp and paper industry wastewater: field observations of native plants for the detoxification of metals and their potential as part of a multidisciplinary strategy. J Environ Chem Eng. 2021;9(4):105547.
  • Sharma P, Ngo HH, Khanal S, et al. Efficiency of transporter genes and proteins in hyperaccumulator plants for metals tolerance in wastewater treatment: sustainable technique for metal detoxification. Environ Technol Innovation. 2021g;23:101725.
  • Tripathi S, Sharma P, Purchase D, et al. Biodegradation of organo-metallic pollutants in distillery wastewater employing a bioaugmentation process. Environ Technol Innovation. 2021a;23:101774.
  • Tripathi S, Sharma P, Chandra R. Degradation of organometallic pollutants of distillery wastewater by autochthonous bacterial community in biostimulation and bioaugmentation process. Bioresour Technol. 2021b;338:125518.
  • Sharma P, Kumar S. Bioremediation of heavy metals from industrial effluents by endophytes and their metabolic activity: recent advances. Bioresour Technol. 2021;339:125589.
  • Sharma P. Role and significance of biofilm-forming microbes in phytoremediation—A review. Environ Technol Innovation. 2021b 25 ;102182.
  • Singh S, Kang SH, Mulchandani A, et al. Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotechnol. 2008;19(5):437–444.
  • Bolisetty S, Peydayesh M, Mezzenga R. Sustainable technologies for water purification from heavy metals: review and analysis. Chem Soc Rev. 2019;48(2):463–487.
  • GracePavithra K, Jaikumar V, Kumar PS, et al. A review on cleaner strategies for chromium industrial wastewater: present research and future perspective. J Clean Prod. 2019;228:580–593.
  • Fernández PM, Viñarta SC, Bernal AR, et al. Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere. 2018;208:139–148.
  • Dhir B. Potential of biological materials for removing heavy metals from wastewater. Environ Sci Pollut Res. 2014;21(3):1614–1627.
  • Rezaei H. Biosorption of chromium by using Spirulina sp. Arabian J Chem. 2016;9(6):846–853.
  • Garcia-Rubio R, de Oliveira HC, Rivera J, et al. The fungal cell wall: candida, cryptococcus, and aspergillus species. Front Microbiol. 2020;10:2993.
  • Chojnacka K. Biosorption and bioaccumulation – the prospects for practical applications. Environ Int. 2010;36(3):299–307.
  • Farooq U, Kozinski JA, Khan MA, et al. Biosorption of heavy metal ions using wheat based biosorbents – a review of the recent literature. Bioresour Technol. 2010;101(14):5043–5053.
  • Mustapha MU, Halimoon N. Microorganisms and biosorption of heavy metals in the environment: a review paper. Journal of Microbial & Biochemical Technology. 2015;7(5):253–256.
  • Igiri BE, Okoduwa SIR, Idoko GO, et al. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. 2018;2018:1–16.
  • Hansda A, Kumar V. A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol. 2016;32(10):1–14.
  • Velásquez L, Dussan J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater. 2009;167(1–3):713–716.
  • Zabochnicka-Świątek M, and Krzywonos M. Potentials of biosorption and bioaccumulation processes for heavy metal removal. Polish J Environ Stud. 2014;23(2 551–561).
  • Garg SK, Tripathi M, Srinath T. Strategies for chromium bioremediation of tannery effluent. Rev Environ Contam Toxicol. 2012;217:75–140.
  • Malaviya P, Singh A. Bioremediation of chromium solutions and chromium containing wastewaters. Crit Rev Microbiol. 2016;42(4):607–633.
  • Bhattacharya A, Gupta A, Kaur A, et al. Alleviation of hexavalent chromium by using microorganisms: insight into the strategies and complications. Water Sci Technol. 2019;79(3):411–424.
  • Joutey NT, Sayel H, Bahafid W, et al. Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev Environ Contam Toxicol. 2015;233:45–69.
  • Javed A. Pollution level analysis in tannery effluents collected from three different cities of Punjab. J Ind Pollut Control Board. 2004 9 3 418–421 .
  • Devi BD, Thatheyus AJ, Ramya D. Bioremoval of hexavalent chromium, using Pseudomonas fluorescens. J Microbiol Biotechnol Res. 2012;2(5):727–735.
  • Abhipsa S, Chandraraj K. Enzymatic reduction of hexavalent chromium in bacteria. ENVIS Newslett. 2009;7:2–5.
  • Ganguli A, Tripathi AK. Survival and chromate reducing ability of Pseudomonas aeruginosa in industrial effluents. Lett Appl Microbiol. 1999;28(1):76–80.
  • El Fantroussi S, Agathos SN. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol. 2005;8(3):268–275.
  • Thavasi R, Sharma S, and Jayalakshmi S. Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. J Pet Environ Biotechnol S. 2011;1(2 1–7).
  • Asira EE. Factors that determine bioremediation of organic compounds in the soil. Acad J Interdiscip Stud. 2013;2(13):125.
  • Naik MG, Duraphe MD. Review paper on-Parameters affecting bioremediation. Int J Life Sci Pharma Res. 2012;2(3):L77–L80.
  • Adams GO, Fufeyin PT, Okoro SE, et al. Bioremediation, Biostimulation and Bioaugmention: a Review. Int J Environ Bioremed Biodegrad. 2020;3(1):28–39.
  • Cases I, and Lorenzo VD. Genetically modified organisms for the environment: stories of success and failure and what we have learned from them International Microbiology . 2005 8(3) 213 .
  • Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. 2011;2011:1–13.
  • Macaulay BM. Understanding the behaviour of oil-degrading micro-organisms to enhance the microbial remediation of spilled petroleum. Appl Ecol Environ Res. 2015;13(1):247–262.
  • Yang S-Z, Jin J, Wei Z, et al. Bioremediation of oil spills in cold environments: a review. Pedosphere. 2009;19(3):371–381.
  • Singh A. ”Hexavalent Chromium: toxic and genotoxic effects and its bioremediation strategies”. Biomed J Sci Tech Res. 2021;35(3):27637–27643.
  • Li H, Huang S, Zhang Y. Cr(VI) removal from aqueous solution by thermophilic denitrifying bacterium Chelatococcus daeguensis TAD1 in the presence of single and multiple heavy metals. J Microbiol. 2016;54(9):602–610.
  • El-Naggar NE-A, El-Khateeb AY, Ghoniem AA, et al. Innovative low-cost biosorption process of Cr6+ by Pseudomonas alcaliphila NEWG-2. Sci Rep. 2020;10(1):1–18.
  • Dadrasnia A, Chuan Wei KS, Shahsavari N, et al. Biosorption potential of bacillus salmalaya strain 139SI for removal of Cr(VI) from aqueous solution. Int J Environ Res Public Health. 2015;12(12):15321–15338.
  • Upadhyay N, Vishwakarma K, Singh J, et al. Tolerance and Reduction of Chromium(VI) by Bacillus sp. MNU16 Isolated from Contaminated Coal Mining Soil. Front Plant Sci. 2017;8:778.
  • Pun R, Raut P, Pant BR. Removal of chromium (VI) from leachate using bacterial biomass. Sci World. 2013;11(11):63–65.
  • Hossan S, Hossain S, Islam MR, et al. Bioremediation of hexavalent chromium by chromium resistant bacteria reduces phytotoxicity. Int J Environ Res Public Health. 2020;17(17):6013.
  • Jobby R, Jha P, Gupta A, et al. Biotransformation of chromium by root nodule bacteria Sinorhizobium sp. SAR1. PloS one. 2019;14(7):e0219387.
  • Congeevaram S, Dhanarani S, Park J, et al. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. J Hazard Mater. 2007;146(1–2):270–277.
  • Kumaran MB, Prasathkumar M, Kumar DM, et al. Utilization of Aspergillus terreus for the biosorption of hexavalent chromium ions. Asian J Biol Sci. 2013;6(7):312–321.
  • Da Rocha Ferreira GL, Vendruscolo F, Antoniosi Filho NR. Biosorption of hexavalent chromium by Pleurotus ostreatus. Heliyon. 2019;5(3):e01450.
  • Ballén-Segura M, Hernández Rodríguez L, Parra Ospina D, et al. Using Scenedesmus sp. for the phycoremediation of tannery wastewater. Tecciencia. 2016;11(21):69–75.
  • Jaafari J, Yaghmaeian K. Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere. 2019;217:447–455.
  • Nithya K, Sathish A, Pradeep K, et al. Algal biomass waste residues of Spirulina platensis for chromium adsorption and modeling studies. J Environ Chem Eng. 2019;7(5):103273.
  • Kadimpati KK, Mondithoka KP, Bheemaraju S, et al. Entrapment of marine microalga, Isochrysis galbana, for biosorption of Cr (III) from aqueous solution: isotherms and spectroscopic characterization. Appl Water Sci. 2013;3(1):85–92.
  • Ayele A, Godeto YG. Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. J Chem. 2021;2021:1–21.
  • Mishra S, Bharagava RN. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health, Part C. 2016;34(1):1–32.
  • Batool R, Yrjälä K, Hasnain S. Impact of environmental stress on biochemical parameters of bacteria reducing chromium. Braz J Microbiol. 2014;45:573–583.
  • Latha S, Vinothini G, Dhanasekaran D. Chromium [Cr (VI)] biosorption property of the newly isolated actinobacterial probiont Streptomyces werraensis LD22. 3 Biotech. 2015;5(4):423–432.
  • Ahluwalia SS, Goyal D. Removal of Cr (VI) from aqueous solution by fungal biomass. Eng Life Sci. 2010;10(5):480–485.
  • Arbanah M, Miradatul NMR, Halim KKH. Utilization of Pleurotus ostreatus in the removal of Cr (VI) from chemical laboratory waste. Int Refreed J Eng Sci. 2013;2(4):29–39.
  • Chhikara S, Hooda A, Rana L, et al. Chromium (VI) biosorption by immobilized Aspergillus Niger in continuous flow system with special reference to FTIR analysis. J Environ Biol. 2010;31(5):561–566.
  • Kalola V, Desai C. Biosorption of Cr (VI) by Halomonas sp. DK4, a halotolerant bacterium isolated from chrome electroplating sludge. Environ Sci Pollut Res. 2020;27(22):27330–27344.
  • Pradhan D, Sukla LB, Sawyer M, et al. Recent bioreduction of hexavalent chromium in wastewater treatment: a review. J Ind Eng Chem. 2017;55:1–20.
  • Han X, Wong YS, Wong MH, et al. Feasibility of using microalgal biomass cultured in domestic wastewater for the removal of chromium pollutants. Water Environ Res. 2008;80(7):647–653.
  • Majumder R, Sheikh L, Naskar A, et al. Depletion of Cr (VI) from aqueous solution by heat dried biomass of a newly isolated fungus Arthrinium malaysianum: a mechanistic approach. Sci Rep. 2017;7(1):1–15.
  • González PS, Ambrosio LF, Paisio CE, et al. Chromium (VI) remediation by a native strain: effect of environmental conditions and removal mechanisms involved. Environ Sci Pollut Res. 2014;21(23):13551–13559.
  • Ran ZHAO, Bi WANG, Cai QT, et al. Bioremediation of hexavalent chromium pollution by Sporosarcina saromensis M52 isolated from offshore sediments in Xiamen, China. Biomedical and Environmental Sciences. 2016;29(2):127–136.
  • Prabhakaran DC, Bolanos-Benitez V, Sivry Y, et al. Mechanistic studies on the bioremediation of Cr (VI) using Sphingopyxis macrogoltabida SUK2c, a Cr (VI) tolerant bacterial isolate. Biochem Eng J. 2019;150:107292.
  • Tan H, Wang C, Zeng G, et al. Bioreduction and biosorption of Cr (VI) by a novel Bacillus sp. CRB-B1 strain. J Hazard Mater. 2020;386:121628.
  • Shi L, Xue J, Liu B, et al. Hydrogen ions and organic acids secreted by ectomycorrhizal fungi, Pisolithus sp1, are involved in the efficient removal of hexavalent chromium from waste water. Ecotoxicol Environ Saf. 2018;161:430–436.
  • Chakraborty V, Sengupta S, Chaudhuri P, et al. Assessment on removal efficiency of chromium by the isolated manglicolous fungi from Indian Sundarban mangrove forest: removal and optimization using response surface methodology. Environ Technol Innovation. 2018;10:335–344.
  • Antony GS, Manna A, Baskaran S, et al. Non-enzymatic reduction of Cr (VI) and it’s effective biosorption using heat-inactivated biomass: a fermentation waste material. J Hazard Mater. 2020;392:122257.
  • Banerjee S, Misra A, Chaudhury S, et al. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. J Hazard Mater. 2019;367:215–223.