3,658
Views
3
CrossRef citations to date
0
Altmetric
Review

Co-microencapsulation: a promising multi-approach technique for enhancement of functional properties

, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5168-5189 | Received 10 Dec 2021, Accepted 29 Jan 2022, Published online: 16 Feb 2022

References

  • Ban KM. Goal 2: Zero hunger, Goal 3: Good health and well-being, Goal 12: Responsible consumption and production. The Sustainable Development Goals Report, (pp. 14-17, 34-35). (New York, NY: United Nations Publications). 2016.
  • Castañeda Guillot C. Probióticos, puesta al día: an update. Revista Cubana de Pediatría. 2018;90(2):286–298.
  • U SDG. (2019). Sustainable development goals. The energy progress report. Tracking SDG, 7.
  • Hassan A, Din AU, Zhu Y, et al. Anti-atherosclerotic effects of Lactobacillus plantarum ATCC 14917 in ApoE−/− mice through modulation of proinflammatory cytokines and oxidative stress. Appl Microbiol Biotechnol. 2020;104:6337–6350.
  • Matiacevich S, Sáez C (2018). Encapsulación de aceite esencial de lemongrass en el desarrollo de ingredientes naturales en polvo para preservación de alimentos: una revisión.
  • Raddatz GC, Menezes CRD. Microencapsulation and co-encapsulation of bioactive compounds for application in food: challenges and perspectives. Ciência Rural. 2021;51(3). DOI:10.1590/0103-8478cr20200616
  • Ramirez Ramirez JC, Rosas Ulloa PETRA, and Velazquez Gonzalez MY, et al. Bacterias lácticas: importancia en alimentos y sus efectos en la salud. Revista Fuente CONACYT. 2011;2(7) .
  • Tarifa MC, Piqueras CM, and Genovese DB, et al. Microencapsulación de Lactobacillus casei y Lactobacillus rhamnosus en partículas de microgel de pectina y pectina-inulina: efecto sobre la supervivencia bacteriana en condiciones de almacenamiento, 10th International Conference of Production Research Americas December 2020 Bahía Blanca, Argentina, 2021. (ICPR-Americas 2020), 1859–1863.
  • Wang Y, Dong Z, Song D, et al. Efectos de los probióticos y prebióticos microencapsulados sobre el rendimiento del crecimiento, las capacidades antioxidantes, las funciones inmunes y la microflora cecal en pollos de engorde. Inmunología alimentaria y agrícola. 2018;29(1):859–869.
  • Wu L, Wang W, Wu Z, et al. Effect of acid and alkali stress on extracellular metabolite profile of Lactobacillus plantarum ATCC 14917. J Basic Microbiol. 2020;60:722–729.
  • Zhu H, Mettu S, and Cavalieri F, et al. Ultrasonic microencapsulation of oil-soluble vitamins by hen egg white and green tea for fortification of food. Food Chemistry. 2021;353:129432.
  • Álvarez-García R. Efecto de los polifenoles sobre la microbiota intestinal en el síndrome metabólico. 2020.
  • Arellano K, Vazquez J, Park H, et al. Safety evaluation and whole-genome annotation of Lactobacillus plantarum strains from different sources with special focus on isolates from green tea. Probiotics Antimicrob Proteins. 2020;12(3):1057–1070.
  • Krasaekoopt WY, and Watcharapoka S. Effect of addition of inulin and galactooligosaccharide on the survival of microencapsulated probiotics in alginate beads coated with chitosan in simulated digestive system, yogurt and fruit juice. LWT-Ciencia y tecnología de los alimentos. 2014;57(2):761–766 doi:https://doi.org/10.1016/j.lwt.2014.01.037.
  • Zhang ZH, Peng H, Woo MW, et al. Preparation and characterization of whey protein isolate-chlorophyll microcapsules by spray drying: effect of WPI ratios on the physicochemical and antioxidant properties. J Food Eng. 2020;267:109729.
  • Wu Y, Li S, Tao Y, et al. Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chem. 2021;348:129083.
  • Castromonte M, Wacyk J, Valenzuela C. Encapsulación de extractos antioxidantes desde sub-productos agroindustriales: una revisión. Revista chilena de nutrición. 2020;47(5):836–847.
  • Castro-Torres AY. Evaluación del efecto prebiótico de polifenoles obtenidos mediante una tecnología híbrida a partir de cultivos, subproductos y recursos naturales poco valorados. Proyecto 2015-4-266936 SAGARPA-CONACyT. 2019.
  • Colín-Cruz MA, Pimentel-González DJ, Carrillo-Navas H, et al. Co-encapsulation of bioactive compounds from blackberry juice and probiotic bacteria in biopolymeric matrices. LWT. 2019;110:94–101.
  • Creus EG. Alimentos prebióticos y probióticos: la polémica científica sobre sus beneficios. Offarm: farmacia y sociedad. 2004;23(5):90–98.
  • Favaro-Trindade CS, Patel B, Silva MP, et al. Microencapsulation as a tool to producing an extruded functional food. LWT. 2020;128:109433.
  • Gasaly N, Riveros K, Gotteland M. Fitoquímicos: una nueva clase de prebióticos. Revista chilena de nutrición. 2020;47(2):317–327.
  • Loyeau PA, Spotti MJ, Braber NV, et al. Microencapsulation of Bifidobacterium animalis subsp. lactis INL1 using whey proteins and dextrans conjugates as wall materials. Food Hydrocoll. 2018;85:129–135.
  • Rodríguez-Barona S, Giraldo GI, Montes LM. Encapsulación de alimentos probióticos mediante liofilización en presencia de prebióticos. Información tecnológica. 2016;27(6):135–144.
  • Ye Q, Georges N, Selomulya C. Microencapsulation of active ingredients in functional foods: from research stage to commercial food products. Trends Food SciTechnol. 2018;78:167–179.
  • Ye Q, Georges N, Selomulya C. Microencapsulation of active ingredients in functional foods: from research stage to commercial food products. Trends Food SciTechnol. 2018;78:167–179.
  • Eratte D, Dowling K, Barrow CJ, et al. In-vitro digestion of probiotic bacteria and omega-3 oil co-microencapsulated in whey protein isolate-gum Arabic complex coacervates. Food Chem. 2017;227:129–136.
  • Vaziri AS, Alemzadeh I, Vossoughi M, et al. Co-microencapsulation of Lactobacillus plantarum and DHA fatty acid in alginate-pectin-gelatin biocomposites. Carbohydr Polym. 2018;199:266–275.
  • Vázquez-Maldonado D, Espinosa-Solis V, Leyva-Porras C, et al. Preparation of spray-dried functional food: effect of adding Bacillus clausii bacteria as a co-microencapsulating agent on the conservation of resveratrol. Processes. 2020;8(7):849.
  • Chen W, Wang H, Zhang K, et al. LiPhysicochemical properties and storage stability of microencapsulated DHA-rich oil with different wall materials. Appl Biochem Biotechnol. 2016;179(7):1129–1142.
  • Wang W, He J, Pan D, et al. Metabolomics analysis of Lactobacillus plantarum ATCC 14917 adhesion activity under initial acid and alkali stress. PloS one. 2018;13(5):e0196231.
  • López Córdoba AF (2012). Desarrollo de sistemas de encapsulación compuestos para la protección de extractos antioxidantes de yerba mate (Doctoral dissertation, Universidad Nacional de La Plata).
  • Assadpour E, Jafari SM. Advances in spray-drying encapsulation of food bioactive ingredients: from microcapsules to nanocapsules. Annu Rev Food Sci Technol. 2019;10:103–131.
  • Prakash B, Kujur A, Yadav A, et al. Nanoencapsulation: an efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control. 2018;89:1–11.
  • Manuel Irache J. Micro- y nanoencapsualción de aditivos y otros compuestos de interés alimentario. In: 1er Congreso Nacional de Agroalimentación. Pamplona: Universidad de Navarra, España; 2011 May.
  • Timilsena YP, Akanbi TO, Khalid N, et al. Complex coacervation: principles, mechanisms and applications in microencapsulation. Int J Biol Macromol. 2019;121:1276–1286.
  • Gharibzahedi SMT, Jafari SM. The importance of minerals in human nutrition: bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food SciTechnol. 2017;62:119–132.
  • Enache IM, Vasile AM, Enachi E, et al. Co-microencapsulation of anthocyanins from black currant extract and lactic acid bacteria in biopolymeric matrices. Molecules. 2020;25(7):1700.
  • Mahdavi SA, Jafari SM, Assadpoor E, et al. Microencapsulation optimization of natural anthocyanins with maltodextrin, gum Arabic and gelatin. Int J Biol Macromol. 2016;85:379–385.
  • Uyen NTT, Hamid ZAA, Tram NXT, et al. Fabricación de microesferas de alginato para la administración de fármacos: una revisión. Revista internacional de macromoléculas biológicas. 2020;153:1035–1046.
  • Pisano R, Arsiccio A, Capozzi LC, et al. Achieving continuous manufacturing in lyophilization: technologies and approaches. Eur J Pharm Biopharm. 2019;142:265–279.
  • Ballesteros LF, Ramirez MJ, Orrego CE, et al. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem. 2017;237:623–631.
  • Poozesh S, Bilgili E. Scale-up of pharmaceutical spray drying using scale-up rules: a review. Int J Pharm. 2019;562:271–292.
  • Agudelo J, Cano A, González-Martínez C, et al. Disaccharide incorporation to improve survival during storage of spray dried Lactobacillus rhamnosus in whey protein-maltodextrin carriers. J Funct Foods. 2017;37:416–423.
  • Silva MP, Tulini FL, Martins E, et al. Comparison of extrusion and co-extrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. LWT. 2018;89:392–399.
  • Yong AKL, Lai KW, Ghazali HM, et al. Microencapsulation of Bifidobacterium animalis subsp. lactis BB-12 with Mannitol. Asia-Pacific J Mol Biol Biotechnol. 2020;28(2):32–42.
  • Eghbal N, and Choudhary R. Complex coacervation: encapsulation and controlled release of active agents in food systems. LWT. 2018;90:254–264.
  • Sing CE. Development of the modern theory of polymeric complex coacervation. Adv Colloid Interface Sci. 2017;239:2–16.
  • de Almeida Paula D, Martins EMF, and de Almeida Costa N, et al. Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation. International Journal of Biological Macromolecules. 2019;133:722–731 doi:https://doi.org/10.1016/j.ijbiomac.2019.04.110 2019.
  • Senturk Parreidt T, Müller K, and Schmid M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods. 2018;7(10):170 doi:10.3390/foods7100170.
  • Shamah-Levy T, Vielma-Orozco E, Heredia-Hernández O, et al. Encuesta Nacional de Salud y Nutrición 2018-19: resultados Nacionales. Cuernavaca, México: Instituto Nacional de Salud Pública; 2020.
  • Nami Y, Lornezhad G, and Kiani A, et al. Alginate-Persian Gum-Prebiotics microencapsulation impacts on the survival rate of Lactococcus lactis ABRIINW-N19 in orange juice. LWT. 2020;124:109190 doi:https://doi.org/10.1016/j.lwt.2020.109190.
  • Lin L, Regenstein JM, Lv S, et al. An overview of gelatin derived from aquatic animals: properties and modification. Trends Food SciTechnol. 2017;68:102–112.
  • Le Bastard Q, Chapelet G, and Javaudin F, et al. The effects of inulin on gut microbial composition: a systematic review of evidence from human studies. European Journal of Clinical Microbiology & Infectious Diseases. 2020;39(3):403–413 doi:10.1007/s10096-019-03721-w.
  • Shang HM, Zhou HZ, and Yang JY, et al. In vitro and in vivo antioxidant activities of inulin. PLOS ONE. 2018;13(2):e0192273 doi:https://doi.org/10.1371/journal.pone.0192273.
  • Shoaib M, Shehzad A, Omar M, et al. Inulin: properties, health benefits and food applications. Carbohydr Polym. 2016;147:444–454.
  • Silva EK, Zabot GL, Bargas MA et al, et al. Microencapsulation of lipophilic bioactive compounds using prebiotic carbohydrates: Effect of the degree of inulin polymerization. Carbohydrates Polymers. 2016;152:775–783 doi:https://doi.org/10.1016/j.carbpol.2016.07.066.
  • Vandeputte D, Falony G, and Vieira-Silva S, et al. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut. 2017;66(11):1968–1974 doi:10.1136/gutjnl-2016-313271.
  • Nunes G Lorenzoni, Etchepare M de, Cichoski A José, Zepka L Queiroz, Jacob Lopes E, Barin J Smanioto, Flores É Marlon, da Silva C de and de Menezes C Ragagnin. (2018). Inulin, hi-maize, and trehalose as thermal protectants for increasing viability of Lactobacillus acidophilus encapsulated by spray drying. LWT, 89 128–133. 10.1016/j.lwt.2017.10.032
  • Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, et al. Pectin and pectin-based composite materials: beyond food texture. Molecules. 2018;23(4):942.
  • Liang LI, Luo Y, Luo Y. Casein and pectin: structures, interactions, and applications. Trends Food SciTechnol. 2020;97:391–403.
  • Naqash F, Masoodi FA, Rather SA, et al. Emerging concepts in the nutraceutical and functional properties of pectin—A Review. Carbohydr Polym. 2017;168:227–239.
  • Rehman A, Ahmad T, Aadil RM, et al. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends Food SciTechnol. 2019;90:35–46.
  • Zhou Y, Zhu X, Zhang C, et al. Characterization of whey protein isolate and pectin composite film catalyzed by small laccase from Streptomyces coelicolor. Environ Technol Innovation. 2020;19:100999.
  • Niu X, Liu A, Liu C, et al. Small Laccase from Streptomyces coelicolor catalyzed chitosan-pectin blending film for hazardous gas removal. Environ Technol Innovation. 2021;101690.
  • Oancea A-M, Hasan M, Vasile AM, et al. Functional evaluation of microencapsulated anthocyanins from sour cherries skins extract in whey proteins isolate. LWT. 2018;95:129–134.
  • Ordoñez-Gómez ES, Reátegui-Díaz D, Villanueva-Tiburcio JE. Polifenoles totales y capacidad antioxidante en cáscara y hojas de doce cítricos. Scientia Agropecuaria. 2018;9(1):113–121.
  • Bakshi PS, Selvakumar D, Kadirvelu K, et al. Chitosan as an environment friendly biomaterial–a review on recent modifications and applications. Int J Biol Macromol. 2020;150:1072–1083.
  • Mujtaba M, Morsi RE, Kerch G, et al. Current advancements in chitosan-based film production for food technology; A review. Int J Biol Macromol. 2019;121:889–904.
  • Vallejo-Domínguez D, Rubio-Rosas E, Aguila-Almanza E, et al. Ultrasound in the deproteinization process for chitin and chitosan production. Ultrason Sonochem. 2021;72:105417.
  • Qi PX, Xiao Y, Wickham ED. Changes in physical, chemical and functional properties of whey protein isolate (WPI) and sugar beet pectin (SBP) conjugates formed by controlled dry-heating. Food Hydrocoll. 2017;69:86–96.
  • Quigley EM. Prebiotics and probiotics in digestive health. Clin Gastroenterol Hepatol. 2019;17(2):333–344.
  • Quiñones M, Miguel M, Aleixandre A. Los polifenoles, compuestos de origen natural con efectos saludables sobre el sistema cardiovascular. Nutrición hospitalaria. 2012;27(1):76–89.
  • Shang J, Liao M, Jin R, et al. Molecular Properties of flammulina velutipes polysaccharide–whey protein isolate (WPI) complexes via noncovalent interactions. Foods. 2021;10(1):1.
  • Guillot CDC. Microbiota intestinal, probióticos y prebióticos. Enfermería investiga: investigación, vinculación, docencia y gestión. 2017;2(4):156–160.
  • Huertas RAP. Bacterias ácido lácticas: papel funcional en los alimentos. Biotecnología en el sector agropecuario y agroindustrial. 2010;8(1):93–105.
  • Fareez IM, Lim SM, Mishra RK, et al. Chitosan coated alginate-xanthan gum bead enhanced pH and thermotolerance of Lactobacillus plantarum LAB12. Int J Biol Macromol. 2015;72:1419–1428.
  • Instituto Nacional de Salud Pública. Encuesta Nacional de Salud y Nutrición 2018. Resultados de Coahuila. Cuernavaca, México: Instituto Nacional de Salud Pública; 2020.
  • Valdovinos MA, Montijo E, Abreu AT, et al. Consenso mexicano sobre probióticos en gastroenterología. Revista de Gastroenterología de México. 2017;82(2):156–178.
  • Duar RM, Lin XB, Zheng J, et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev. 2017;41(Supp_1):S27–S48.
  • Dueñas M, Fernández D, Hernández T, et al. Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14917. J Sci Food Agric. 2005;85(2):297–304.
  • Mariño García A, Núñez Velázquez M, Barreto Penié J. Microbiota, probióticos, prebióticos y simbióticos. Acta Médica de Cuba. 2016;17(1).
  • Márquez NO. Efectos Del uso de prebióticos y probióticos en la enfermedad de alzheimer effects of the use of prebiotics and probiotics in Alzheimer’s Disease. Actualización en Nutrición. 2020;21(2):65–70.
  • Murray PR, Rosenthal , KS, Pfaller, MA. Human Microbiome in Health and Disease . Medical Microbiology. Philadlphia, PA: ELSEVIER; 2016;5–10. ISBN: 978-0-323-29956-5.
  • Valencia Avilés E, Figueroa I, Sosa Martínez E, Bartolomé-Camacho, MC, et al. Polifenoles: propiedades antioxidantes y toxicológicas. Revista de la Facultad de Ciencias Químicas. 2017;16:15–29. ISBN: .
  • Peñarrieta JM, Tejeda L, and Mollinedo P, et al. Phenolic compounds in food. Revista Boliviana de Química. 2014;31(2):68–81.
  • Enache IM, Vasile AM, Enachi E, et al. Co-microencapsulation of anthocyanins from cornelian cherry fruits and lactic acid bacteria in biopolymeric matrices by freeze-drying: evidences on functional properties and applications in food. Polymers. 2020;12(4):906.
  • Enache IM, Vasile AM, Enachi E, et al. Co-microencapsulation of anthocyanins from black currant extract and lactic acid bacteria in biopolymeric matrices by freeze-drying. Molecules. 2020;25:1700.
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices. Biomaterials. 2000;21(23):2475–2490.
  • Marchese A, Orhan IE, Daglia M, et al. Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chem. 2016;210:402–414.
  • Zhu Z, Min T, Zhang X, et al. Microencapsulation of thymol in poly (lactide-co-glycolide)(PLGA): physical and antibacterial properties. Materials. 2019;12(7):1133.
  • Pandey P, Mishra HN. Co-microencapsulation of γ-aminobutyric acid (GABA) and probiotic bacteria in thermostable and biocompatible exopolysaccharides matrix. LWT. 2021;136:110293.
  • Vaziri AS, Alemzadeh I, Vossoughi M. Survivability and oxidative stability of co-microencapsulated L. Plantarum PTCC 1058 and DHA as a juice carrier. Food Biosci. 2019;32:100460.
  • Ghasemi Fard S, Wang F, Sinclair AJ, et al. How does high DHA fish oil affect health? A systematic review of evidence. Crit Rev Food Sci Nutr. 2019;59(11):1684–1727.
  • Gonzabay Cuadrado CS, Lindao Bararata CS (2019). Determinación de polifenoles totales y actividad antioxidante del extracto metanólico de la cáscara de sandía (Citrullus lanatus) variedad Charleston Grey (Doctoral dissertation, Universidad de Guayaquil. Facultad de Ciencias Químicas).
  • Shen Y, Lu T, Liu XY, et al. Improving the oxidative stability and lengthening the shelf life of DHA algae oil with composite antioxidants. Food Chem. 2020;313:126139.
  • Tantratian S, Pradeamchai M. Select a protective agent for encapsulation of Lactobacillus plantarum. LWT. 2020;123:109075.