1,237
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Poly(ε-L-lysine) and poly(L-diaminopropionic acid) co-produced from spent mushroom substrate fermentation: potential use as food preservatives

&
Pages 5892-5902 | Received 04 Jan 2022, Accepted 07 Feb 2022, Published online: 21 Feb 2022

References

  • Hamano Y, Arai T, Ashiuchi M, et al. NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s. Nat Prod Rep. 2013;30:1087–1097.
  • Takehara M, Saimura M, Inaba H, et al. Poly(γ-l-diaminobutanoic acid), a novel poly(amino acid), coproduced with poly(ɛ-l-lysine) by two strains of Streptomyces celluloflavus. FEMS Microbiol Lett. 2008;286:110–117.
  • Li S, Yao Y, Hu S, et al. Short-Chain Poly(γ-diaminobutanoic acid), A Poly(amino acid) Produced by a Marine Bacteria Bacillus pumilus. Curr Microbiol. 2021. 10.1007/s00284-021-02371-6
  • Bankar SB, Singhal RS. Panorama of poly-ε-lysine. RSC Adv. 2013;3:8586–8603.
  • Shukla SC, Singh A, Pandey AK, et al. Review on production and medical applications of ɛ-polylysine. Biochem Eng J. 2012;65:70–81.
  • Yoshida T, Nagasawa T. ε-Poly-l-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol. 2003;62:21–26.
  • Pan L, Chen XS, Liu MM, et al. Efficient production of ε-poly-L-lysine from glucose by two-stage fermentation using pH shock strategy. Process Biochem. 2017;63:8–15.
  • Bankar SB, Singhal RS. Improved Poly-ε-lysine biosynthesis using Streptomyces noursei NRRL 5126 by controlling dissolved oxygen during fermentation. J Microbiol Biotechnol. 2011;21:652–658.
  • Robinson T, Singh D, Nigam P. Solid-state fermentation: a promising microbial technology for secondary metabolite production, Appl. Microbiol Biotechnol. 2001;55:284–289.
  • Elibol M, Mavituna F. Characteristics of antibiotic production in a multiphase system. Process Biochem. 1997;32:417–422.
  • Carboué Q, Claeys-Bruno M, Bombarda I, et al. Experimental design and solid state fermentation: a holistic approach to improve cultural medium for the production of fungal secondary metabolites. Chemom. Intell. Lab. Syst. 2018;176:101–107.
  • Hamrouni R, Claeys-Bruno M, and Molinet J, et al. Challenges of Enzymes, Conidia and 6-Pentyl-alpha-pyrone Production from Solid-State-Fermentation of agroindustrial wastes using experimental design and t. asperellum strains. Waste and Biomass Valorization. 2020;11:5699–5710.
  • Piedrahíta-Aguirre CA, Alegre RM. Production of lipopeptide iturin a using novel strain Bacillus iso 1 in a packed bed bioreactor, Biocatal. 2014;Agric. Biotechnol. 3:154–158.
  • Gmoser R, Fristedt R, Larsson K, et al. From stale bread and brewers spent grain to a new food source using edible filamentous fungi. Bioengineered. 2020;11:582–598.
  • Li P, He C, Li G, et al. Biological pretreatment of corn straw for enhancing degradation efficiency and biogas production. Bioengineered. 2020. DOI:10.1080/21655979.2020.1733733
  • Zhu H.J, Sun L.F, and Zhang Y.F, et al. Conversion of spent mushroom substrate to biofertilizer using a stress-tolerant phosphate-solubilizing Pichia farinose FL7. Bioresour Technol. 2012;111:410–416.
  • Kaparaju P, Serrano M, Thomsen AB, et al. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol. 2009;100:2562–2568.
  • White JS, Yohannan BK, Walker GM. Bioconversion of brewer’s spent grains to bioethanol. FEMS Yeast Res. 2008;8:1175–1184.
  • Grujić M, Dojnov B, Potočnik I, et al. Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp.and Aspergillus Niger in solid state fermentation. Int Biodeterior Biodegrad. 2015;104:290–298.
  • Templeton D, Ehrman T. Determination of acid-insoluble lignin in biomass, Lab. Anal. Proced. 1995;3.
  • Asada C, Asakawa A, Sasaki C, et al. Characterization of the steam-exploded spent Shiitake mushroom medium and its efficient conversion to ethanol, Bioresour. Technol. 2011;102:10052–10056.
  • Dubois M, Gilles K, Hamilton JK, et al. A colorimetric method for the determination of sugars. Nature. 1951;168:167.
  • Bremmer JM, Mulvaney CS. Nitrogen total. methods of soil analysis, part 2. Soil Sci. Soc. Am. B. Ser. 1996;5:1085–1121.
  • Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:375–400.
  • Chahdoura H, Morales P, Barreira JCM, et al. Dietary fiber, mineral elements profile and macronutrients composition in different edible parts of Opuntia microdasys (Lehm.) Pfeiff and Opuntia macrorhiza (Engelm.), LWT - Food Sci Technol. 2015;64:446–451.
  • Kahar P, Iwata T, Hiraki J, et al. Enhancement of ε-polylysine production by Streptomyces albulus strain 410 using pH control. J Biosci Bioeng. 2001;91:190–194.
  • Liang Y, Sarkany N, Cui Y, et al. Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour Technol. 2010. DOI:10.1016/j.biortech.2010.03.087
  • Hirohara H, Takehara M, Saimura M, et al. Biosynthesis of poly(ɛ-l-lysine)s in two newly isolated strains of Streptomyces sp., Appl. Microbiol Biotechnol. 2006;73:321–331.
  • Fleet GH. Chapter 5 - Yeast Spoilage of Foods and Beverages. Kurtzman CP, Fell JW, T.b.t. T.y, et al, Eds. London: Elsevier; 2011. p. 53–63.
  • Salo S, Wirtanen G. Disinfectant Efficacy on Foodborne Spoilage Yeast Strains, Food Bioprod. Process. 2005;83:288–296.
  • Krishna C. Solid-state fermentation systems - An overview. Crit Rev Biotechnol. 2005;25:1–30.
  • Yong X, Raza W, Yu G, et al. Optimization of the production of poly-γ-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates. Bioresour Technol. 2011;102:7548–7554.
  • Kawai T, Kubota T, Hiraki J, et al. Biosynthesis of ε-poly-L-lysine in a cell-free system of Streptomyces albulus. Biochem Biophys Res Commun. 2003;311:635–640.
  • Nurhayati J, Mayzuhroh A, Arindhani S, et al. Studies on bioethanol production of commercial baker’s and alcohol yeast under aerated culture using sugarcane molasses as the media, Agric. Agric. Sci. Procedia. 2016;9:493–499.
  • Liu YP, Zheng P, Sun ZH, et al. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour Technol. 2008. DOI:10.1016/j.biortech.2007.03.044
  • Zhang S, Wang J, Jiang H. Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chem. 2021. 10.1016/j.foodchem.2020.128860
  • El-Naggar MY, El-Assar SA, Abdul-Gawad SM. Solid-state fermentation for the production of meroparamycin by Streptomyces sp. strain MAR01. J Microbiol Biotechnol. 2009;19:468–473.
  • Cadirci BH, Yasa I, Kocyigit A. Streptomyces sp. TEM 33 possesses high lipolytic activity in solid-state fermentation in comparison with submerged fermentation, Prep. Biochem. Biotechnol. 2016;46:23–29.
  • Raimbault M. General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol. 1998;1:26–27.
  • Yamanaka K, Kito N, Imokawa Y, et al. Mechanism of ε-poly-l-lysine production and accumulation revealed by identification and analysis of an ε-poly-l-lysine-degrading enzyme, Appl. Environ Microbiol. 2010;76:5669–5675.
  • Ellaiah P, Srinivasulu B, Adinarayana K. Optimisation studies on neomycin production by a mutant strain of Streptomyces marinensis in solid state fermentation. Process Biochem. 2004;39:529–534.
  • Zeng X, Miao W, Zeng H, et al. Production of natamycin by Streptomyces gilvosporeus Z28 through solid-state fermentation using agro-industrial residues. Bioresour Technol. 2019;273:377–385.
  • Li G, Chen Z, Chen N, et al. Enhancing the efficiency of L-tyrosine by repeated batch fermentation. Bioengineered. 2020. DOI:10.1080/21655979.2020.1804177
  • Hyldgaard M, Mygind T, Vad BS, et al. The antimicrobial mechanism of action of epsilon-poly-L-lysine, Appl. Environ Microbiol. 2014. DOI:10.1128/AEM.02204-14
  • Ye R, Xu H, Wan C, et al. Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochem Biophys Res Commun. 2013. DOI:10.1016/j.bbrc.2013.08.001
  • Tan Z, Bo T, Guo F, et al. Effects of ε-Poly-L-lysine on the cell wall of Saccharomyces cerevisiae and its involved antimicrobial mechanism. Int J Biol Macromol. 2018; DOI:10.1016/j.ijbiomac.2018.07.094
  • Shao Z, Yang Y, Fang S, et al. Mechanism of the antimicrobial activity of whey protein-ε-polylysine complexes against Escherichia coli and its application in sauced duck products. Int. J. Food Microbiol. 2020; DOI:10.1016/j.ijfoodmicro.2020.108663
  • Liu H, Pei H, Han Z, et al. The antimicrobial effects and synergistic antibacterial mechanism of the combination of ε-Polylysine and nisin against Bacillus subtilis. Food Control. 2015. 10.1016/j.foodcont.2014.07.050