5,485
Views
6
CrossRef citations to date
0
Altmetric
Review

Exploring the role of microbial biofilm for industrial effluents treatment

, , & ORCID Icon
Pages 6420-6440 | Received 29 Nov 2021, Accepted 15 Feb 2022, Published online: 28 Feb 2022

References

  • Costerton JW, Lewandowski Z, Caldwell DE, et al. Microbial biofilms. Annu Rev Microbiol. 1995;49(1):711–745.
  • *Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci Am. 1978;238(1):86–95.
  • Azeredo J, Azevedo NF, Briandet R, et al. Critical review on biofilm methods. Crit Rev Microbiol. 2017;43(3):313–351.
  • Davey ME, O’toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64(4):847–867.
  • Flemming HC, Wingender J, Szewzyk U, et al. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575.
  • *Mangwani N, Shukla SK, Kumari S, et al. Effect of biofilm parameters and extracellular polymeric substance composition on polycyclic aromatic hydrocarbon degradation. RSC Adv. 2016;6(62):57540–57551.
  • Rajamanikandan S, Jeyakanthan J, Srinivasan P. Molecular docking, molecular dynamics simulations, computational screening to design quorum sensing inhibitors targeting LuxP of Vibrio harveyi and its biological evaluation. Appl Biochem Biotechnol. 2017;181(1):192–218.
  • Li YH, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors. 2012;12(3):2519–2538.
  • Swem LR, Swem DL, Wingreen NS, et al. Deducing receptor signaling parameters from in vivo analysis: luxN/AI-1 quorum sensing in Vibrio harveyi. Cell. 2008;134(3):461–473.
  • Balan B, Dhaulaniya AS, Varma DA, et al. Microbial biofilm ecology, in silico study of quorum sensing receptor-ligand interactions and biofilm mediated bioremediation. Arch Microbiol. 2020;Aug 12. DOI:10.1007/s00203-020-02012-9.
  • Feng L, Wu Z, Yu X. Quorum sensing in water and wastewater treatment biofilms. J Environ Biol. 2013;34(2 Spec No):437–444.
  • *Varjani S, Rakholiya P, Ng HY, et al. Microbial degradation of dyes: an overview. Bioresour Technol. 2020;314:123728.
  • Huang J, Shi Y, Zeng G, et al. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview. Chemosphere. 2016;157:137–151.
  • Halan B, Buehler K, Schmid A. Biofilms as living catalysts in continuous chemical syntheses. Trends Biotechnol. 2012;30(9):453–465.
  • Escudie R, Cresson R, Delgenes J-P, et al. Control of start-up and operation of anaerobic biofilm reactors: an overview of 15 years of research. Water Res. 2011;45(1):1–10.
  • Huang H, Peng C, Peng P, et al. Towards the biofilm characterization and regulation in biological wastewater treatment. Appl Microbiol Biotechnol. 2019;103(3):1115–1129.
  • Barkay T, Schaefer J. Metal and radionuclide bioremediation: issues, considerations and potentials. Curr Opin Microbiol. 2001;4(3):318–323.
  • *Mangwani N, Kumari S, Das S. Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnol Genet Eng Rev. 2016;32(1–2):43–73.
  • Edwards SJ, Kjellerup BV. Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol. 2013;97(23):9909–9921.
  • Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108.
  • Varjani SJ, Gnansounou E, Pandey A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere. 2017;188:280–291.
  • Mosharaf M, Tanvir M, Haque M, et al. Metal-adapted bacteria isolated from wastewaters produce biofilms by expressing proteinaceous Curli Fimbriae and cellulose nanofibers. Front Microbiol. 2018;9:1334.
  • Pamp SJ, Tolker-Nielsen T. Multiple roles of biosurfactants in structural biofilm development by pseudomonas aeruginosa. J Bacteriol. 2007;189(6):2531–2539.
  • Cao B, Christophersen L, Kolpen M, et al. Diffusion retardation by binding of tobramycin in an alginate biofilm model. PLoS ONE. 2016;11(4):e0153616.
  • Mattei MR, Frunzo L, D’Acunto B, et al. Continuum and discrete approach in modeling biofilm development and structure: a review. J Math Biol. 2018;76(4):945–1003.
  • Nishitani K, Sutipornpalangkul W, de Mesy Bentley KL, et al. Quantifying the natural history of biofilm formation in vivo during the establishment of chronic implant-associated Staphylococcus aureus osteomyelitis in mice to identify critical pathogen and host factors. J Orthop Res. 2015;33(9):1311–1319.
  • Singh R, Paul D, Jain RK. Biofilms: implications in bioremediation. Trends Microbiol. 2006;14(9):389–397.
  • Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633.
  • Stalder T, Top E. Plasmid transfer in biofilms: a perspective on limitations and opportunities. NPJ Biofilms Microbiomes. 2016;2(1):16022.
  • Yin Q, Gu M, Hermanowicz SW, et al. Potential interactions between syntrophic bacteria and methanogens via type IV pili and quorum-sensing systems. Environ Int. 2020;138:105650.
  • Wang X, Bi X, Hem LJ, et al. Microbial community composition of a multi-stage moving bed biofilm reactor and its interaction with kinetic model parameters estimation. J Environ Manag. 2018b;218:340–347.
  • Yu QS, Huang H, Ren HQ, et al. In situ activity recovery of aging biofilm in biological aerated filter: surfactants treatment and mechanisms study. Bioresour Technol. 2016;219:403–410.
  • Lai CY, Dong QY, Chen JX, et al. Role of extracellular polymeric substances in a methane based membrane biofilm reactor reducing vanadate. Environ Sci Technol. 2018;52(18):10680–10688.
  • Wang JF, Ren HQ, Li XH, et al. In situ monitoring of wastewater biofilm formation process via ultrasonic time domain reflectometry (UTDR). Chem Eng J. 2018a;334:2134–2141.
  • Ren TT, Li XY, Yu HQ. Effect of N-acy-L-homoserine lactones like molecules from aerobic granules on biofilm formation by Escherichia coli K12. Bioresour Technol. 2013;129:655–658.
  • Schmid N, Suppiger A, Steiner E, et al. High intracellular c-di-GMP levels antagonize quorum sensing and virulence gene expression in Burkholderia cenocepacia H111. Microbiol-Sam. 2017;163(5):754–764.
  • Petrova OE, Sauer K. Dispersion by Pseudomonas aeruginosa requires an unusual posttranslational modification of BdlA. Proc Natl Acad Sci U S A. 2012;109(41):16690–16695.
  • Stanley NR, Lazazzera BA. Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol. 2004;52(4):917–924.
  • Lazazzera BA. Lessons from DNA microarray analysis: the gene expression profile of biofilms. Curr Opin Microbiol. 2005;8(2):222–227.
  • Shukla SK, Rao TS. Effect of calcium on Staphylococcus aureus biofilm architecture: a confocal laser scanning microscopic study. Colloids Surf B. 2013a;103:448–454.
  • Otzen D, Nielsen PH. We find them here, we find them there: functional bacterial amyloid. Cell Mol Life Sci. 2008;65(6):910–927.
  • Gloag ES, Turnbull L, Huang A, et al. Self-organization of bacterial biofilms is facilitated by extracellular DNA. PNAS USA. 2013;110(28):11541–11546.
  • Zhang W, Sun J, Ding W, et al. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development. Front Cell Inf Microbiol. 2015;5:40.
  • Mooney JA, Pridgen EM, Manasherob R, et al. Periprosthetic bacterial biofilm and quorum sensing. J Orthop Res. 2018;36(9):2331–2339.
  • Passos da Silva D, Schofield MC, Parsek MR, et al. An update on the sociomicrobiology of quorum sensing in gram-negative biofilm development. Pathogens. 2017;6(4):51.
  • Aspiras MB, Ellen RP, Cvitkovitch DG, et al. ComX activity of Streptococcus mutans growing in biofilms. FEMS Microbiol Lett. 2004;238(1):167–174.
  • Kumari S, Mangwani N, Das S. Synergistic effect of quorum sensing genes in biofilm development and PAHs degradation by a marine bacterium. Bioengineered. 2016;7(3):205–207.
  • Dusane DH, Zinjarde SS, Venugopalan VP, et al. Quorum sensing: implications on rhamnolipid biosurfactant production. Biotechnol Genet Eng Rev. 2010;27(1):159–184.
  • Whiteley M, Diggle SP, Greenberg EP. Progress in and promise of bacterial quorum sensing research. Nature. 2017;551(7680):313–320.
  • Labbate M, Queck SY, Koh KS, et al. Quorum sensing-controlled biofilm development in serratia liquefaciens MG1. J Bacteriol. 2004;186(3):692–698.
  • Maddela NR, Sheng B, Yuan S, et al. Roles of quorum sensing in biological wastewater treatment: a critical review. Chemosphere. 2019;221:616–629.
  • Mangwani N, Dash HR, Chauhan A, et al. Bacterial quorum sensing, functional features and potential applications in biotechnology. J Mol Microbiol Biotechnol. 2012;22(4):215–227.
  • Churchill ME, Chen L. Structural basis of acyl-homoserine lactone-dependent signaling. Chem Rev. 2011;111(1):68–85.
  • Xu B, Ng TCA, Huang S, et al. Quorum quenching affects biofilm development in an anaerobic membrane bioreactor (AnMBR): from macro to micro perspective. Bioresour Technol. 2021Oct;25:126183.
  • Fetzner S. Quorum quenching enzymes. J Biotechnol. 2015;201:2–14.
  • Verbeke F, De Craemer S, Debunne N, et al. Peptides as quorum sensing molecules: measurement techniques and obtained levels in vitro and in vivo. Front Neurosci. 2017;11:183.
  • Biswa P, Doble M. Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water. FEMS Microbiol Lett. 2013;343(1):34–41.
  • Shukla SK, Mangwani N, Rao TS, et al. Biofilm-mediated bioremediation of polycyclic aromatic hydrocarbons. In: Das S, editors. Microbial biodegradation and bioremediation. 1st ed. Waltham MA: Elsevier; 2014. p. 203–232.
  • Gorisa J, Boon N, Lebbe L, et al. Diversity of activated sludge bacteria receiving the 3-chloroaniline-degradative plasmid pC1gfp. FEMS Microbiol Ecol. 2003;46(2):221–230.
  • Springael D, Peys K, Ryngaert A, et al. Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor: indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria. Environ Microbiol. 2002;4(2):70–80.
  • Kalathil S, Khan MM, Lee J, et al. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnol Adv. 2013;31(6):915–924.
  • Mishra B, Varjani S, Agarwal DC, et al. Engineering biocatalytic material for the remediation of pollutants: a comprehensive review. Environ Technol Innovation. 2020;20:101063.
  • Mishra B, Varjani S, Iragavarapu GP, et al.Microbial fingerprinting of potential biodegrading organisms. Curr Poll Rep. 2019;1–17. DOI:10.1007/s40726-019-00116-5)
  • Lovley DR. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energy Environ Sci. 2011;4(12):4896–4906.
  • Saratale GD, Saratale RG, Shahid MK, et al. A comprehensive overview on electro-active biofilms, role of exo-electrogens and their microbial niches in microbial fuel cells (MFCs). Chemosphere. 2017;178:534–547.
  • Butti SK, Velvizhi G, Sulonen MLK, et al. Microbial electrochemical technologies with the perspective of harnessing bioenergy: maneuvering towards upscaling. Renewable Sustainable Energy Rev. 2016;53:462–476.
  • Rahimnejad M, Najafpour GD, Ghoreyshi AA, et al. Methylene blue as electron promoters in microbial fuel cell. Int J Hydrogen Energy. 2011;36(20):13335–13341.
  • Li Y, Li H. Type IV pili of Acidithiobacillus ferrooxidans can transfer electrons from extracellular electron donors. J Bas Microbiol. 2014;54(3):226–231.
  • Kumar R, Singh L, Zularisam AW. Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable Sustainable Energy Rev. 2016;56:1322–1336.
  • Cusick RD, Kiely PD, Logan BE. A monetary comparison of energy recovered from microbial fuel cells and microbial electrolysis cells fed winery or domestic wastewaters. Int J Hydrogen Energy. 2010;35(17):8855–8861.
  • Li Z, Haynes R, Sato E, et al. Microbial community analysis of a single chamber microbial fuel cell using potato wastewater. Water Environ Res. 2014;86(4):324–330.
  • Popov A, Michie IS, Kim JR, et al. Enrichment strategy for enhanced bioelectrochemical hydrogen production and the prevention of methanogenesis. Int J Hydrogen Energy. 2016;41(7):4120–4131.
  • Wrighton KC, Thrash JC, Melnyk RA, et al. Evidence for direct electron transfer by a gram-positive bacterium isolated from a microbial fuel cell. Appl Environ Microbiol. 2011;77(21):7633–7639.
  • Gaur VK, Sharma P, Gupta S, et al. Opportunities and challenges in omics approaches for biosurfactant production and feasibility of site remediation. Strateg Adv Environ Technol Innov. 2022;25:102132.
  • Rajmohan KS, Ramya C, Varjani S. Plastic pollutants: waste management for pollution control and abatement. Curr Opin Environ Sci Health. 2019;12:72–84.
  • Shrout JD, Nerenberg R. Monitoring bacterial twitter: does quorum sensing determine the behavior of water and wastewater treatment biofilms? Environ Sci Technol. 2012;46(4):1995–2005.
  • Mangwani N, Shukla SK, Rao TS, et al. Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids Surf B. 2013;114:301–309.
  • Markande AR, Patel D, Varjani S. A review on biosurfactants: properties, applications and current developments. Bioresour Technol. Jun 2021; 330:124963.
  • Makkar RS, Rockne KJ. Comparison of synthetic surfactants and biosurfactants in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ Toxicol Chem. 2003;22(10):2280–2292.
  • Varjani S, Upasani VN. Evaluation of rhamnolipid production by a halotolerant novel strain of Pseudomonas aeruginosa. Bioresour Technol. 2019;288:121577.
  • Varjani SJ, Upasani VN. Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol. 2016;222:195–201.
  • Wilson C, Lukowicz R, and Merchant S, et al. Quantitative and qualitative assessment methods for biofilm growth: a mini-review. Res Rev J Eng Technol. 2017;6(4):17.
  • Ta-Chen L, Chang JS, Young CC. Exopolysaccharides produced by Gordonia alkanivorans enhance bacterial degradation activity for diesel. Biotechnol Lett. 2008;30(7):1201–1206.
  • Siddharth T, Sridhar P, Vinila V, et al. Environmental applications of microbial extracellular polymeric substance (EPS): a review. J Environ Manage. 2021;287:112307.
  • Yong YC, Wu XY, Sun JZ, et al. Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: a review. Chemosphere. 2015;140:18–25.
  • Rathankumar AK, Saikia K, Kumar PS, et al. Surfactant-aided mycoremediation of soil contaminated with polycyclic aromatic hydrocarbon (PAHs): progress, limitation, and countermeasures. J Chem Technol Biot. 2022;97(2):391–408.
  • Varjani SJ, Rana DP, Jain AK, et al. Synergistic exsitu biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad. 2015;103:116–124.
  • Alegbeleye OO, Opeolu BO, Jackson VA. Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environ Manage. 2017;60(4):758–783.
  • *Varjani S, Upasani VN, Pandey A. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. SciTotal Environ. 2020;737:139766.
  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, et al. Environmental applications of biosurfactants: recent advances. Int J Mol Sci. 2011;12(1):633–654.
  • Varjani S, Upasani VN. Bioaugmentation of Pseudomonas aeruginosa NCIM 5514 - A novel oily waste degrader for treatment of petroleum hydrocarbons. Bioresour Technol. 2021;319:124240.
  • Varjani SJ, Gnansounou E. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs. Bioresour Technol. 2017;245:1258–1265.
  • Xiao-Hong PEI, Xin-Hua ZHAN, Shi-Mei WANG, et al. Effects of a biosurfactant and a synthetic surfactant on phenanthrene degradation by a Sphingomonas strain. Pedosphere. 2010;20(6):771–779.
  • Owsianiak M, Chrzanowski Ł, Szulc A, et al. Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. Bioresour Technol. 2009;100(3):1497–1500.
  • Labrenz M, Druschel GK, Thomsen-Ebert T, et al. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science. 2000;290(5497):1744–1747.
  • Kargi F, Eker S. Removal of 2,4-dichlorophenol and toxicity from synthetic wastewater in a rotating perforated tube biofilm reactor. Process Biochem. 2005;40(6):2105–2111.
  • Wolfaardt GM, Lawrence JR, Robarts RD. Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation. Appl Environ Microbiol. 1995;61(1):152–158.
  • Papa R, Parrilli E, Sannia G. Engineered marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125: a promising micro-organism for the bioremediation of aromatic compounds. J Appl Microbiol. 2009;106(1):49–56.
  • Messina E, Denaro R, Crisafi F, et al. Genome sequence of obligate marine polycyclic aromatic hydrocarbons-degrading bacterium Cycloclasticus sp. 78-ME, isolated from petroleum deposits of the sunken tanker Amoco Milford Haven, Mediterranean Sea. Mar Genomics. 2016;25:11–13.
  • Löffler FE, Ritalahti KM, Zinder SH. Dehalococcoides and reductive dechlorination of chlorinated solvents. In: Stroo HF, et al, editors. Bioaugmentation for groundwater remediation. Vol. 5. New York: Springer; 2013. p. 39–88.
  • Yoshida S, Ogawa N, Fujii T, et al. Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1. J Appl Microbiol. 2009;106(3):790–800.
  • Shimada K, Itoh Y, Washio K, et al. Efficacy of forming biofilms by naphthalene degrading Pseudomonas stutzeri T102 toward bioremediation technology and its molecular mechanisms. Chemosphere. 2012;87(3):226–233.
  • Tribedi P, Gupta AD, Sil AK. Adaptation of Pseudomonas sp. AKS2 in biofilm on low-density polyethylene surface: an effective strategy for efficient survival and polymer degradation. Bioresources Bioprocess. 2015;2(14):1–10.
  • Hussaini SZ, Shaker M, Iqbal MA. Isolation of bacterial for degradation of selected pesticides. Adv Biores. 2013;4:82–85.
  • Albrecht R, Gourry JC, Simonnot MO, et al. Complex conductivity response to microbial growth and biofilm formation on phenanthrene spiked medium. J Appl Geophys. 2011;75(3):558–564.
  • Chen Q, Tu H, Luo X, et al. The regulation of para-nitrophenol degradation in Pseudomonas putida DLL-E4. PLoS One. 2016;11(5):e0155485.
  • Żur J, Piński A, Marchlewicz A, et al. Organic micropollutants paracetamol and ibuprofen-toxicity, biodegradation, and genetic background of their utilization by bacteria. Environ Sci Pollut Res Int. 2018;25(22):21498–21524.
  • Murdoch RW, Hay AG. The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation. 2015;26(2):105–113.
  • Marchlewicz A, Guzik U, Hupert-Kocurek K, et al. Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1(2015b). Environ Sci Pollut Res. 2017;24(8):7572–7584.
  • Krell T, Lacal J, Reyes-Darias JA, et al. Bioavailability of pollutants and chemotaxis. Curr Opin Microbiol. 2013;24:451–456.
  • Dussud C, Ghiglione J-F. Bacterial degradation of synthetic plastics. In: Briand F, editor. Marine litter in the mediterranean and black seas. Paris: CIESM Publisher; 2014. p. 180.
  • Mahon AM, O’Conell B, Healy MG, et al. Microplastics in sewage sludge: effects of treatment. Environ Sci Technol. 2017;51(2):810–818.
  • Bardají DKR, Moretto JAS, Furlan JPR, et al. A mini-review: current advances in polyethylene biodegradation. World J Microbiol Biotechnol. 2020;36(2):32.
  • Yang J, Yang Y, Wu WM, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol. 2014;48(23):13776–13784.
  • Hossain MR, Jiang M, Wei Q, et al. Microplastic surface properties affect bacterial colonization in freshwater. J Bas Microbiol. 2019;59(1):54–61.
  • Yuan J, Ma J, Sun Y, et al. Microbial degradation and other environmental aspects of microplastics/plastics. Sci Total Environ. 2020;715:136968.
  • Sekiguchi T, Saika A, Nomura K, et al. Biodegradation of aliphatic polyesters soaked in deep seawaters and isolation of poly(ɛ-caprolactone)-degrading bacteria. Polym Degrad Stab. 2011;96(7):1397–1403.
  • Romera-Castillo C, Pinto M, Langer TM, et al. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nat Commun. 2018;9(1):1430.
  • Gewert B, Plassmann MM, Macleod M. Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts. 2015;17(9):1513–1521.
  • Santo M, Weitsman R, Sivan A. The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int Biodeterior Biodegradation. 2013;84:204–210.
  • Dang BT, Bui XT, Tran DPH, et al. Current application of algae derivatives for bioplastic production: a review. Bioresour Technol. 2022;347:126698.
  • Valle A, Bailey MJ, Whiteley AS, et al. N-acyl-l-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge. Environ Microbiol. 2004;6(4):424–433.
  • Kang YS, Park W. Contribution of quorum-sensing system to hexadecane degradation and biofilm formation in Acinetobacter sp. strain DR1. J Appl Microbiol. 2010;109(5):1650–1659.
  • Yong YC, Zhong JJ. Regulation of aromatics biodegradation by rhl quorum sensing system through induction of catechol meta-cleavage pathway. Bioresour Technol. 2013;136:761–765.
  • Chong G, Kimyon O, Rice SA, et al. The presence and role of bacterial quorum sensing in activated sludge. Microb Biotechnol. 2012;5(5):621–633.
  • Gao J, Duan Y, Liu Y, et al. Long- and short-chain AHLs affect AOA and AOB microbial community composition and ammonia oxidation rate in activated sludge. J Environ Sci. 2018;78:53–62.
  • Kim Y, Wang X, Zhang XS, et al. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ Microbiol. 2010;12(5):1105–1121.
  • Sun S, Liu X, Ma B, et al. The role of autoinducer-2 in aerobic granulation using alternating feed loadings strategy. Bioresour Technol. 2016;201:58–64.
  • Tan CH, Koh KS, Xie C, et al. Community quorum sensing signalling and quenching: microbial granular biofilm assembly. Npj Biofilm Microb. 2015;1(1):15006.
  • Tan CH, Koh KS, Xie C, et al. The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules. ISME J. 2014;8(6):1186–1197.
  • Ma H, Wang X, Zhang Y, et al. The diversity, distribution and function of N-acyl-homoserine lactone (AHL) in industrial anaerobic granular sludge. Bioresour Technol. 2018;247:116–124.
  • Cheong WS, Kim SR, Oh HS, et al. Design of quorum quenching microbial vessel to enhance cell viability for biofouling control in membrane bioreactor. J Microbiol Biotechnol. 2014;24(1):97–105.
  • Li Y-S, Cao J-S, Li -B-B, et al. Outcompeting presence of acyl-homoserine-lactone (AHL)-quenching bacteria over AHL-producing bacteria in aerobic granules. Environ Sci Technol Lett. 2016;3(1):36–40.
  • Kim AL, Park SY, Lee CH, et al. Quorum quenching bacteria isolated from the sludge of a wastewater treatment plant and their application for controlling biofilm formation. J Microbiol Biotechnol. 2014;24(11):1574–1582.
  • Hu H, He J, Yu H, et al. A strategy to speed up formation and strengthen activity of biofilms at low temperature. RSC Adv. 2017;7(37):22788–22796.
  • Lee K, Lee S, Lee SH, et al. Fungal quorum quenching: a paradigm shift for energy savings in membrane bioreactor (MBR) for wastewater treatment. Environ Sci Technol. 2016;50(20):10914–10922.
  • Igiri BE, Okoduwa SIR, Idoko GO, et al. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: a review. J Toxicol. 2018;2018:2568038.
  • Li C, Li Y, Cheng X, et al. Immobilization of Rhodococcus rhodochrous BX2 (an acetonitrile-degrading bacterium) with biofilm-forming bacteria for wastewater treatment. Bioresour Technol. 2013;131:390–396.
  • Kragh KN, Hutchison JB, Melaugh G, et al. Role of multicellular aggregates in biofilm formation. mBio. 2016;7(2):e00237–00216.
  • Dey S, Paul AJ. Influence of metal ions on biofilm formation by Arthrobacter sp. SUK 1205 and evaluation of their Cr (VI) removal efficacy. Int Biodeter Biodegrad. 2018;132:122–131.
  • Lakshmi S, Suvedha K, Sruthi R, et al. Hexavalent chromium sequestration from electronic waste by biomass of Aspergillus carbonarius. Bioengineered. 2020;11(1):708–717.
  • Yong YC, Zhong JJ. N-acylated homoserine lactone production and involvement in the biodegradation of aromatics by an environmental isolate of Pseudomonas aeruginosa. Process Biochem. 2010;45(12):1944–1948.
  • Miran W, Jang J, Nawaz M, et al. Mixed sulfate-reducing bacteria-enriched microbial fuel cells for the treatment of wastewater containing copper. Chemosphere. 2017;189:134–142.
  • Cydzik-Kwiatkowska A, Zielińska M. Microbial composition of biofilm treating wastewater rich in bisphenol A. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2018;53(4):385–392.
  • de Beer DM, Botes M, Cloete TE. The microbial community of a biofilm contact reactor for the treatment of winery wastewater. J Appl Microbiol. 2018;124(2):598–610.
  • Nakkeeran E, Varjani S, Goswami S, et al. Chitosan based silver nanocomposite for hexavalent chromium removal from tannery industry effluent using a packed bed reactor. J Environ Eng. 2020;146(6):04020032.
  • Nguyen TTD, Bui XT, Nguyen TT, et al. Co-culture of microalgae-activated sludge in sequencing batch photobioreactor systems: effects of natural and artificial lighting on wastewater treatment. Bioresour Technol. 2022;343:126091.
  • Wang X, Daigger G, de Vries W, et al. Impact hotspots of reduced nutrient discharge shift across the globe with population and dietary changes. Nat Commun. 2019;10(1):2627.
  • Chaali M, Naghdi M, Brar SK, et al. A review on the advances in nitrifying biofilm reactors and their removal rates in wastewater treatment. J Chem Technol Biotechnol. 2018;93(11):3113–3124.
  • Leyva-Díaz JC, Monteoliva-García A, Martín-Pascual J, et al. Moving bed biofilm reactor as an alternative wastewater treatment process for nutrient removal and recovery in the circular economy model. Bioresour Technol. 2020;299:122631.
  • Tdh V, Bui XT, Dang BT, et al. Influence of organic loading rates on treatment performance of membrane bioreactor treating tannery wastewater. Environ Technol Innovation. 2021;24:101810.
  • Di Biase A, Kowalski MS, Devlin TR, et al. Moving bed biofilm reactor technology in municipal wastewater treatment: a review. J Environ Manage. 2019;247:849–866.
  • Huang S, Pooi CK, Shi X, et al. Performance and process simulation of membrane bioreactor (MBR) treating petrochemical wastewater. SciTotal Environ. 2020;747:141311.
  • Chu L, Wang J, Quan F, et al. Modification of polyurethane foam carriers and application in a moving bed biofilm reactor. Process Biochem. 2014;49(11):1979–1982.
  • Guo W, Ngo -H-H, Li J. A mini-review on membrane fouling. Bioresour Technol. 2012;122:27–34.
  • *Lade H, Paul D, Kweon JH. Isolation and molecular characterization of biofouling bacteria and profiling of quorum sensing signal molecules from membrane bioreactor activated sludge. Int J Mol Sci. 2014;15(2):2255–2273.
  • Shindhal T, Rakholiya P, Varjani S, et al. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered. 2021;12(1):70–87.
  • Angelidaki I, Karakashev D, Batstone DJ, et al. Biomethanation and its potential. Methods Enzymol. 2011;494:327–351.
  • Liu Y, Whitman WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci. 2008;1125(1):171–189.
  • Leclerc M, Delgènes J-P, Godon -J-J. Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environ Microbiol. 2004;6(8):809–819.
  • Zhang D, Li J, Guo P, et al. Dynamic transition of microbial communities in response to acidification in fixed-bed anaerobic baffled reactors (FABR) of two different flow directions. Bioresour Technol. 2011;102(7):4703–4711.
  • Kobayashi T, Yan F, Takahashi S, et al. Effect of starch addition on the biological conversion and microbial community in a methanol-fed UASB reactor during long-term continuous operation. Bioresour Technol. 2011;102(17):7713–7719.
  • Zhang G, Zhang F, Ding G, et al. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. ISME J. 2012;6(7):1336–1344.
  • Sasaki K, Haruta S, Ueno Y, et al. Archaeal population on supporting material in methanogenic packed-bed reactor. J Biosci Bioeng. 2006;102(3):244–246.
  • Jaiswal S, Shukla P. Alternative strategies for microbial remediation of pollutants via synthetic biology. Front Microbiol. 2020;11:808.
  • Mujawar SY, Shamim K, Vaigankar DC, et al. Arsenite biotransformation and bioaccumulation by Klebsiella pneumoniae strain SSSW7 possessing arsenite oxidase (aioA) gene. Biometals. 2019;32(1):65–76.
  • Guzik U, Gre´n I, Hupert-Kocurek K, et al. Catechol 1, 2-dioxygenase from the new aromatic compounds–degrading Pseudomonas putida strain N6. Int Biodeterior Biodegrad. 2011;65(3):504–512.
  • Gong T, Liu R, Zuo Z, et al. Metabolic engineering of Pseudomonas putida KT2440 for complete mineralization of methyl parathion and γ-Hexachlorocyclohexane. ACS Synth Biol. 2016;5(5):434–442.
  • Dvorak P, Bidmanova S, Damborsky J, et al. Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1, 2, 3- trichloropropane. Environ Sci Technol. 2014;48(12):6859–6866.
  • de la Pena Mattozzi M, Tehara SK, Hong T, et al. Mineralization of paraoxon and its use as a sole c and p source by a rationally designed catabolic pathway in Pseudomonas putida. Appl Environ Microbiol. 2006;72(10):6699–6706.
  • Zampolli J, Di Canito A, Cappelletti M, et al. Biodegradation of naphthenic acids: identification of Rhodococcus opacus R7 genes as molecular markers for environmental monitoring and their application in slurry microcosms. Appl Microbiol Biotechnol. 2020;104(6):2675–2689.
  • Feng S, Hao Ngo H, Guo W, et al. Roles and applications of enzymes for resistant pollutants removal in wastewater treatment. Bioresour Technol. Sep 2021;335:125278.
  • Shah SB, Ali F, Huang L, et al. Complete genome sequence of bacillus sp. HBCD-sjtu, an efficient HBCD-degrading bacterium. 3 Biotech. 2018;8(7):291.
  • Singh SB. Enzyme catalysis and its role in food processing industries. In: A B, editor. Enzymes in food technology. Law (Singapore: Springer; 2018. p. 143–165.
  • Carbajosa G, Cases I. Transcriptional networks that regulate hydrocarbon biodegradation. In: Timmis KN, McGenity T, van der Meer JR, et al, editors. Handbook of hydrocarbon and lipid microbiology. Berlin: Springer; 2010. p. 1399–1410.
  • Garg V, Khan S, Dutt K. Systematic analysis of microbial degradation pathway of 1-Naphthyl-N-Methyl carbamate generated by EAWAG biocatalysis/biodegradation database-pathway prediction system. Int J Appl Sci Res Rev. 2014;1:049–055.
  • Dangi AK, Sharma B, Hill RT, et al. Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol. 2019;39(1):79–98.
  • Parellada EA, Igarza M, Isacc P, et al. Squamocin, an annonaceous acetogenin, enhances naphthalene degradation mediated by Bacillus atrophaeus CN4. Rev Argent Microbiol. 2017;49(3):282–288.
  • Dellamatrice PM, Silva-Stenico ME, Moraes LABD, et al. Degradation of textile dyes by cyanobacteria. Braz J Microbiol. 2017;48(1):25–31.
  • Kang C, Yang JW, Cho W, et al. Oxidative biodegradation of 4-chlorophenol by using recombinant monooxygenase cloned and overexpressed from Arthrobacter chlorophenolicus A6. Bioresour Technol. 2017;240:123–129.
  • Yaashika PR, Kumar PS, Varjani S, et al. Rhizoremediation of Cu(II) ions from contaminated soil using plant growth promoting bacteria: an outlook on pyrolysis conditions on plant residues for methylene Orange dye biosorption. Bioengineered. 2020;11(1):175–187.
  • *Lade H, Paul D, Kweon JH. Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci. 2014;10(5):547–562.
  • *Varjani SJ, Upasani VN. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad. 2017;120:71–83.