1,442
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

Methyltransferase-like 3 induces the development of cervical cancer by enhancing insulin-like growth factor 2 mRNA-binding proteins 3-mediated apoptotic chromatin condensation inducer 1 mRNA stability

, , , , &
Pages 7034-7048 | Received 17 Dec 2021, Accepted 15 Feb 2022, Published online: 08 Mar 2022

References

  • Siegel RL, Miller KD, and Jemal A. Cancer statistics. CA Cancer J Clin. 2019;69(1):7–34.
  • Marth C, Landoni F, Mahner S, et al. Cervical cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl_4):iv72–iv83.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Kashyap N, Krishnan N, Kaur S, et al. Risk factors of cervical cancer: a case-control study. Asia Pac J Oncol Nurs. 2019;6(3):308–314.
  • Du GH, Wang J-K, Richards JR, et al. Genetic polymorphisms in tumor necrosis factor alpha and interleukin-10 are associated with an increased risk of cervical cancer. Int Immunopharmacol. 2019;66:154–161.
  • Sugawara Y, Tsuji I, Mizoue T, et al. Cigarette smoking and cervical cancer risk: an evaluation based on a systematic review and meta-analysis among Japanese women. Jpn J Clin Oncol. 2019;49(1):77–86.
  • Okunade KS. Human papillomavirus and cervical cancer. J Obstet Gynaecol. 2019;40(5):1–7.
  • He J, Huang B, Zhang K, et al. Long non-coding RNA in cervical cancer: from biology to therapeutic opportunity. Biomed Pharmacother. 2020;127:110209.
  • Park JW, Han JW. Targeting epigenetics for cancer therapy. Arch Pharm Res. 2019;42(2):159–170.
  • Cao J, Yan Q. Cancer epigenetics, tumor immunity, and immunotherapy. Trends Cancer. 2020;6(7):580–592.
  • Gaździcka J, Gołąbek K, Strzelczyk JK. Epigenetic modifications in head and neck cancer. Biochemical Genetics. 2020;58(2):213–244.
  • Mohammad HP, Barbash O, and Creasy CL. Targeting epigenetic modifications in cancer therapy: erasing the roadmap to cancer. Nat Med. 2019;25(3):403–418.
  • Zhou Z, Lv J, Yu H, et al. Mechanism of RNA modification N6-methyladenosine in human cancer. Molecular Cancer. 2020;19(1):104.
  • Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303–d307.
  • Panneerdoss S, Eedunuri VK, Yadav P, et al. Cross-talk among writers, readers, and erasers of m(6)A regulates cancer growth and progression. Science Advances. 2018;4(10):eaar8263.
  • Sun T, Wu R, Ming L. The role of m6A RNA methylation in cancer. Biomed Pharmacother. 2019;112:108613.
  • He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer. Molecular Cancer. 2019;18(1):176.
  • Wang X, Li Z, Kong B, et al. Reduced m(6)A mRNA methylation is correlated with the progression of human cervical cancer. Oncotarget. 2017;8(58):98918–98930.
  • Ma X, Li Y, Wen J, et al. m6A RNA methylation regulators contribute to malignant development and have a clinical prognostic effect on cervical cancer. Am J Transl Res. 2020;12(12):8137–8146.
  • Zhang C, Zhang M, Ge S, et al. Reduced m6A modification predicts malignant phenotypes and augmented Wnt/PI3K-Akt signaling in gastric cancer. Cancer Medicine. 2019;8(10):4766–4781.
  • Yang Z, Ma J, Han S, et al. ZFAS1 exerts an oncogenic role via suppressing miR-647 in an m(6)A-dependent manner in cervical cancer. Onco Targets Ther. 2020;13:11795–11806.
  • Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31–42.
  • Zeng C, Huang W, Li Y. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. Journal of Hematology & Oncology. 2020;13(1):117.
  • Zheng W, Dong X, Zhao Y, et al. Multiple functions and mechanisms underlying the role of METTL3 in human cancers. Front Oncol. 2019;9:1403.
  • Wang H, Xu B, Shi J. N6-methyladenosine METTL3 promotes the breast cancer progression via targeting Bcl-2. Gene. 2020;722:144076.
  • Peng W, Li J, Chen R, et al. Upregulated METTL3 promotes metastasis of colorectal cancer via miR-1246/SPRED2/MAPK signaling pathway. J Exp Clin Cancer Res. 2019;38(1):393.
  • Yang -D-D, Chen Z-H, Yu K, et al. METTL3 promotes the progression of gastric cancer via targeting the MYC pathway. Front Oncol. 2020;10:115.
  • Wang Q, Guo X, Li L, et al. N(6)-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020;11(10):911.
  • Bi YN, Guan JP, Wang L, et al. Clinical significance of microRNA-125b and its contribution to ovarian carcinogenesis. Bioengineered. 2020;11(1):939–948.
  • Zhou J, Guo X, Chen W, et al. Targeting survivin sensitizes cervical cancer cells to radiation treatment. Bioengineered. 2020;11(1):130–140.
  • Liang Z, Xu J, Ma Z, et al. MiR-187 suppresses non-small-cell lung cancer cell proliferation by targeting FGF9. Bioengineered. 2020;11(1):70–80.
  • Cai L, Ye L, Hu X, et al. MicroRNA miR-330-3p suppresses the progression of ovarian cancer by targeting RIPK4. Bioengineered. 2021;12(1):440–449.
  • Zhao J, Zhou K, Ma L, et al. MicroRNA-145 overexpression inhibits neuroblastoma tumorigenesis in vitro and in vivo. Bioengineered. 2020;11(1):219–228.
  • Ayupe AC, Reis EM. Evaluating the Stability of mRNAs and Noncoding RNAs. Methods Mol Biol. 2017;1468:139–153.
  • Buchanan BW, Lloyd ME, Engle SM, and Rubenstein EM . Cycloheximide chase analysis of protein degradation in Saccharomyces cerevisiae. J Vis Exp. 2016;110:53975.
  • Miwa T, Kanda M, Umeda S, et al. Establishment of peritoneal and hepatic metastasis mouse xenograft models using gastric cancer cell lines. Vivo. 2019;33(6):1785–1792.
  • Chen X, Xu M, Xu X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 2020;19(1):106.
  • Seelig CA, Blüthner M, Seelig HP. High sensitivity detection of Anti-DFS70 antibodies by radioimmunoprecipitation assay (RIPA). Clin Lab. 2020;66(5):10.7754/Clin.Lab.2019.191016.
  • Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology. 2018;20(3):285–295.
  • Lei J, Andrae B, Ploner A, et al. Cervical screening and risk of adenosquamous and rare histological types of invasive cervical carcinoma: population based nested case-control study. Bmj. 2019;365:l1207.
  • Cohen PA, Jhingran A, Oaknin A, et al. Cervical cancer. Lancet. 2019;393(10167):169–182.
  • Chatterjee K, Mukherjee S, Vanmanen J, et al. Dietary polyphenols, resveratrol and pterostilbene exhibit antitumor activity on an hpv e6-positive cervical cancer model: an in vitro and in vivo analysis. Front Oncol. 2019;9:352.
  • Karthiya R, Khandelia P. m6A RNA methylation: ramifications for gene expression and human health. Molecular Biotechnology. 2020;62(10):467–484.
  • Huang X, Lv D, Yang X, et al. m6A RNA methylation regulators could contribute to the occurrence of chronic obstructive pulmonary disease. J Cell Mol Med. 2020;24(21):12706–12715.
  • Qin Y, Li L, Luo E, et al. Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med. 2020;46(6):1958–1972.
  • Lan Q, Liu PY, Haase J. The critical role of RNA m(6)A methylation in cancer. Cancer Research. 2019;79(7):1285–1292.
  • Lin X, Chai G, Wu Y, et al. RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nature Communications. 2019;10(1):2065.
  • Xu N, Chen J, He G, et al. Prognostic values of m6A RNA methylation regulators in differentiated Thyroid Carcinoma. J Cancer. 2020;11(17):5187–5197.
  • Xu LC, Pan JX, Pan HD. Construction and validation of an m6A RNA methylation regulators-based prognostic signature for esophageal cancer. Cancer Manag Res. 2020;12:5385–5394.
  • Wang J, Lin H, Zhou M, et al. The m6A methylation regulator-based signature for predicting the prognosis of prostate cancer. Future Oncology (London, England). 2020;16(30):2421–2432.
  • Lin S, Liu J, Jiang W, et al. METTL3 promotes the proliferation and mobility of gastric cancer cells. Open Med (Wars). 2019;14(1):25–31.
  • Taketo K, Konno M, Asai A, et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol. 2018;52(2):621–629.
  • Ni HH, Zhang L L, Huang H, Dai SQ, and Li J, et al. Connecting METTL3 and intratumoural CD33(+) MDSCs in predicting clinical outcome in cervical cancer. 2020;18(1):393.
  • Wu F, Zhang Y, Fang Y, et al. Elevated expression of inhibitor of apoptosis-stimulating protein of p53 (iASPP) and methyltransferase-like 3 (METTL3) correlate with poor prognosis in FIGO Ib1-IIa squamous cell cervical cancer. J Cancer. 2020;11(9):2382–2389.
  • Chan CB, Liu X, Jang SW, et al. NGF inhibits human leukemia proliferation by downregulating cyclin A1 expression through promoting acinus/CtBP2 association. Oncogene. 2009;28(43):3825–3836.
  • Rodor J, Pan Q, Blencowe BJ, et al. The RNA-binding profile of Acinus, a peripheral component of the exon junction complex, reveals its role in splicing regulation. RNA (New York, N.Y.). 2016;22(9):1411–1426.
  • Xue L, Xie L, Song X, et al. [Expression and significance of ACIN1 mRNA in platelets of lung cancer]. Zhongguo Fei Ai Za Zhi. 2018;21(9):677–681.
  • Shu Y, Iijima T, Sun W, et al. The ACIN1 gene is hypermethylated in early stage lung adenocarcinoma. J Thorac Oncol. 2006;1(2):160–167.
  • Deng X, Su R, Weng H, et al. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Research. 2018;28(5):507–517.
  • Li Z, Peng Y, Li J, et al. N(6)-methyladenosine regulates glycolysis of cancer cells through PDK4. Nature Communications. 2020;11(1):2578.
  • Zhang Y, Wang D, Wu D, et al. Long noncoding RNA KCNMB2-AS1 stabilized by N6-methyladenosine modification promotes cervical cancer growth through acting as a competing endogenous RNA. Cell Transplant. 2020;29:963689720964382.