1,218
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Potent anti-tumor activity of CD45RA-targeting Hm3A4-Ranpirnase against myeloid lineage leukemias

ORCID Icon, , , & ORCID Icon
Pages 8631-8642 | Received 27 Sep 2021, Accepted 11 Mar 2022, Published online: 24 Mar 2022

References

  • Kersten B, Valkering M, Wouters R, et al. CD45RA, a specific marker for leukaemia stem cell sub-populations in acute myeloid leukaemia. Br J Haematol. 2016;173(2):219–235.
  • Joudinaud R, Boyer T. Stem cells in myelodysplastic syndromes and acute myeloid leukemia: first cousins or unrelated entities? Front Oncol. 2021;11:730899.
  • Arnone M, Konantz M, Hanns P, et al. Acute myeloid leukemia stem cells: the challenges of phenotypic heterogeneity. Cancers (Basel). 2020;12(12):3742.
  • Li S, Tang Y, Zhang J, et al. 3A4, a new potential target for B and myeloid lineage leukemias. J Drug Target. 2011;19(9):797–804.
  • Li S, Shen D, Guo X, et al. Construction, expression, and characterization of a novel human-mouse chimeric antibody, Hm3A4: a potential therapeutic agent for B and myeloid lineage leukemias. DNA Cell Biol. 2018;37(9):778–785.
  • Weidle UH, Tiefenthaler G, Schiller C, et al. Prospects of bacterial and plant protein-based immunotoxins for treatment of cancer. Cancer Genomics Proteomics. 2014;11(1):25–38.
  • Lambert JM. Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol. 2005;5(5):543–549.
  • Pastan I, Hassan R, Fitzgerald DJ, et al. Immunotoxin therapy of cancer. Nat Rev Cancer. 2006;6(7):559–565.
  • MacDonald GC, Glover N. Effective tumor targeting: strategies for the delivery of armed antibodies. Curr Opin Drug Discovery Dev. 2005;8(2):177–183.
  • Grinberg Y, Benhar I. Addressing the immunogenicity of the cargo and of the targeting antibodies with a focus on demmunized bacterial toxins and on antibody-targeted human effector proteins. Biomedicines. 2017;5(2):28.
  • Palanca-Wessels MC, Press OW. Advances in the treatment of hematologic malignancies using immunoconjugates. Blood. 2014;123(15):2293–2301.
  • Al-Salama ZT. Emapalumab: first global approval. Drugs. 2019;79(1):99–103.
  • Ardelt W, Mikulski SM, Shogen K. Amino acid sequence of an anti-tumor protein from Rana pipiens oocytes and early embryos. Homology to pancreatic ribonucleases. J Biol Chem. 1991;266(1):245–251.
  • Ardelt W, Ardelt B, Darzynkiewicz Z. Ribonucleases as potential modalities in anticancer therapy. Eur J Pharmacol. 2009;625(1–3):181–189.
  • Lee I. Ranpirnase (Onconase), a cytotoxic amphibian ribonuclease, manipulates tumour physiological parameters as a selective killer and a potential enhancer for chemotherapy and radiation in cancer therapy. Expert Opin Biol Ther. 2008;8(6):813–827.
  • Qiao M, Zu LD, He XH, et al. Onconase downregulates microRNA expression through targeting microRNA precursors. Cell Res. 2012;22(7):1199–1202.
  • Costanzi J, Sidransky D, Navon A, et al. Ribonucleases as a novel pro-apoptotic anticancer strategy: review of the preclinical and clinical data for ranpirnase. Cancer Invest. 2005;23(7):643–650.
  • Notomista E, Catanzano F, Graziano G, et al. Onconase: an unusually stable protein. Biochemistry. 2000;39(30):8711–8718.
  • Chang CH, Gupta P, Michel R, et al. Ranpirnase (frog RNase) targeted with a humanized, internalizing, anti-Trop-2 antibody has potent cytotoxicity against diverse epithelial cancer cells. Mol Cancer Ther. 2010;9(8):2276–2286.
  • Taghizadegan N, Firoozrai M, Nassiri M, et al. A novel strategy for engineering of a smart generation of immune ribonucleases against EGFR(+) cells. J Cell Physiol. 2021;236(6):4303–4312.
  • Weber T, Mavratzas A, Kiesgen S, et al. A humanized Anti-CD22-Onconase antibody-drug conjugate mediates highly potent destruction of targeted tumor cells. J Immunol Res. 2015;2015:561814.
  • Mikulski SM, Costanzi JJ, Vogelzang NJ, et al. Phase II trial of a single weekly intravenous dose of ranpirnase in patients with unresectable malignant mesothelioma. J Clin Oncol. 2002;20(1):274–281.
  • Lee JE, Raines RT. Ribonucleases as novel chemotherapeutics: the ranpirnase example. BioDrugs. 2008;22(1):53–58.
  • Nirachonkul W, Ogonoki S, Thumvijit T, et al. CD123-targeted nano-curcumin molecule enhances cytotoxic efficacy in leukemic stem cells. Nanomaterials (Basel). 2021;11(11):2974.
  • Malhotra A. Tagging for protein expression. Methods Enzymol. 2009;463:239–258.
  • Andersen KR, Leksa NC, Schwartz TU. Optimized E. coli expression strain LOBSTR eliminates common contaminants from His-tag purification. Proteins. 2013;81(11):1857–1861.
  • Huang YY, Deng JY, Gu J, et al. The key DNA-binding residues in the C-terminal domain of Mycobacterium tuberculosis DNA gyrase A subunit (GyrA). Nucleic Acids Res. 2006;34(19):5650–5659.
  • Wang Z, Chen Y, Li S, et al. Successful construction and stable expression of an anti-CD45RA scFv-EGFP fusion protein in Chinese hamster ovary cells. Protein Expr Purif. 2014;94:1–6.
  • Matzku S, Brocker EB, Bruggen J, et al. Modes of binding and internalization of monoclonal antibodies to human melanoma cell lines. Cancer Res. 1986;46(8):3848–3854.
  • Boross P, Leusen JH. Mechanisms of action of CD20 antibodies. Am J Cancer Res. 2012;2(6):676–690.
  • Thie H, Toleikis L, Li J, et al. Rise and fall of an anti-MUC1 specific antibody. PLoS One. 2011;6(1):e15921.
  • Yu CJ, Jia LT, Meng YL, et al. Selective proapoptotic activity of a secreted recombinant antibody/AIF fusion protein in carcinomas overexpressing HER2. Gene Ther. 2006;13(4):313–320.
  • Kiesgen S, Arndt MAE, Korber C, et al. An EGF receptor targeting Ranpirnase-diabody fusion protein mediates potent antitumour activity in vitro and in vivo. Cancer Lett. 2015;357(1):364–373.
  • Grodzki AC, Berenstein E. Antibody purification: affinity chromatography - protein A and protein G Sepharose. Methods Mol Biol. 2010;588:33–41.