952
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Necdin, one of the important pathway proteins in the regulation of osteosarcoma progression by microRNA-200c

, , , , , , , & ORCID Icon show all
Pages 8915-8925 | Received 21 Jan 2022, Accepted 16 Mar 2022, Published online: 25 Mar 2022

References

  • Li Z, Li X, Xu D, et al. An update on the roles of circular RNAs in osteosarcoma[J]. Cell Prolif. 2021;54(1):e12936.
  • Zheng C, Tang F, Min L, et al. PTEN in osteosarcoma: recent advances and the therapeutic potential[J]. Biochimica et biophysica acta. Reviews on cancer. 2020;1874(2):188405.
  • Lilienthal I, Herold N. Targeting molecular mechanisms underlying treatment efficacy and resistance in osteosarcoma: a review of current and future strategies[J]. Int J Mol Sci. 2020;21(18):6885.
  • Zhai Q, Qin J, Jin X, et al. PADI4 modulates the invasion and migration of osteosarcoma cells by down-regulation of epithelial-mesenchymal transition[J]. Life Sci. 2020;256:117968.
  • Mateu-Sanz M, Tornín J, Ginebra MP, et al. Cold atmospheric plasma: a new strategy based primarily on oxidative stress for osteosarcoma therapy[J]. J Clin Med. 2021;10(4):893.
  • Kager L, Zoubek A, Pötschger U, et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant cooperative osteosarcoma study group protocols[J]. J Clin Oncol. 2003;21(10):2011–2018.
  • Prudowsky ZD, Yustein JT. Recent Insights into Therapy Resistance in Osteosarcoma[J]. Cancers (Basel). 2020;13(1):83.
  • Ghosh A, Platt RN, Vandewege MW, et al. Identification and characterization of microRNAs (miRNAs) and their transposable element origins in the saltwater crocodile, Crocodylus porosus[J]. Anal Biochem. 2020;602:113781.
  • Liu J, Ke F, Chen T, et al. MicroRNAs that regulate PTEN as potential biomarkers in colorectal cancer: a systematic review[J]. J Cancer Res Clin Oncol. 2020;146(4):809–820.
  • Byun Y, Choi YC, Jeong Y, et al. MiR-200c downregulates HIF-1α and inhibits migration of lung cancer cells[J]. Cell Mol Biol Lett. 2019;24(1):28.
  • Liu B, Du R, Zhou L, et al. miR-200c/141 regulates breast cancer stem cell heterogeneity via targeting HIPK1/β-Catenin Axis[J]. Theranostics. 2018;8(21):5801–5813.
  • Ren ZF, Du MF, Fu H, et al. MiR-200c promotes proliferation of papillary thyroid cancer cells via Wnt/β-catenin signaling pathway[J]. Eur Rev Med Pharmacol Sci. 2020;24(10):5512–5518.
  • Li T, Zhao P, Li Z, et al. miR-200c-3p suppresses the proliferative, migratory, and invasive capacities of nephroblastoma cells via targeting FRS2[J]. Biopreserv Biobank. 2019;17(5):444–451.
  • Liu Y, Zhu ST, Wang X, et al. MiR-200c regulates tumor growth and chemosensitivity to cisplatin in osteosarcoma by targeting AKT2[J]. Sci Rep. 2017;7(1):13598.
  • Jay P, Rougeulle C, Massacrier A, et al. The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region[J]. Nat Genet. 1997;17(3):357–361.
  • Hu YH, Chen Q, Lu YX, et al. Hypermethylation of NDN promotes cell proliferation by activating the Wnt signaling pathway in colorectal cancer[J]. Oncotarget. 2017;8(28):46191–46203.
  • Yang H, Das P, Yu Y, et al. NDN is an imprinted tumor suppressor gene that is downregulated in ovarian cancers through genetic and epigenetic mechanisms[J]. Oncotarget. 2016;7(3):3018–3032.
  • Virani S, Bellile E, Bradford CR, et al. NDN and CD1A are novel prognostic methylation markers in patients with head and neck squamous carcinomas[J]. BMC Cancer. 2015;15(1):825.
  • Lee M, Beggs SM, Gildea D, et al. Necdin is a breast cancer metastasis suppressor that regulates the transcription of c-Myc[J]. Oncotarget. 2015;6(31):31557–31568.
  • Chang IW, Wang YH, Wu WJ, et al. Necdin overexpression predicts poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder[J]. J Cancer. 2016;7(3):304–313.
  • De Faveri LE, Hurst CD, Platt FM, et al. Putative tumour suppressor gene necdin is hypermethylated and mutated in human cancer[J]. Br J Cancer. 2013;108(6):1368–1377.
  • Cheng C, Ding Q, Zhang Z, et al. PTBP1 modulates osteosarcoma chemoresistance to cisplatin by regulating the expression of the copper transporter SLC31A1[J]. J Cell Mol Med. 2020;24(9):5274–5289.
  • Fu D, Lu C, Qu X, et al. LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis[J]. Aging (Albany NY). 2019;11(19):8374–8385.
  • Zhang S, Hua Z, Ba G, et al. Antitumor effects of the small molecule DMAMCL in neuroblastoma via suppressing aerobic glycolysis and targeting PFKL[J]. Cancer Cell Int. 2021;21(1):619.
  • Yu S, Li A, Liu Q, et al. Chimeric antigen receptor T cells: a novel therapy for solid tumors[J]. J Hematol Oncol. 2017;10(1):78.
  • Zhang L, Ye Y, Dhar R, et al. Estimating dynamic cellular morphological properties via the combination of the RTCA system and a Hough-transform-based algorithm[J]. Cells. 2019;8(10):1287.
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc. 2008;3(6):1101–1108.
  • Rueden CT, Schindelin J, Hiner MC, et al. ImageJ2: imageJ for the next generation of scientific image data[J]. BMC Bioinformatics. 2017;18(1):529.
  • Zhang L, Lv Z, Xu J, et al. MicroRNA-134 inhibits osteosarcoma angiogenesis and proliferation by targeting the VEGFA/VEGFR1 pathway. FEBS J. 2018;285(7):1359–1371.
  • Beillard E, Ong SC, Giannakakis A, et al. miR-Sens–a retroviral dual-luciferase reporter to detect microRNA activity in primary cells[J]. RNA. 2012;18(5):1091–1100.
  • Xu K, Zhang P, Zhang J, et al. Identification of potential micro-messenger RNAs (miRNA-mRNA) interaction network of osteosarcoma[J]. Bioengineered. 2021;12(1):3275–3293.
  • Mansoori B, Silvestris N, Mohammadi A, et al. miR-34a and miR-200c have an additive tumor-suppressive effect on breast cancer cells and patient prognosis[J]. Genes (Basel). 2021;12(2):267.
  • Choi PW, Bahrampour A, Ng SK, et al. Characterization of miR-200 family members as blood biomarkers for human and laying hen ovarian cancer[J]. Sci Rep. 2020;10(1):20071.
  • Barker PA, Salehi A. The MAGE proteins: emerging roles in cell cycle progression, apoptosis, and neurogenetic disease[J]. J Neurosci Res. 2002;67(6):705–712.
  • Kawamata H, Furihata T, Omotehara F, et al. Identification of genes differentially expressed in a newly isolated human metastasizing esophageal cancer cell line, T.Tn-AT1, by cDNA microarray[J]. Cancer Sci. 2003;94(8):699–706.
  • Li Y, Meng G, Guo QN. Changes in genomic imprinting and gene expression associated with transformation in a model of human osteosarcoma[J]. Exp Mol Pathol. 2008;84(3):234–239.
  • Virani S, Light E, Peterson LA, et al. Stability of methylation markers in head and neck squamous cell carcinoma[J]. Head Neck. 2016;38(Suppl S1):E1325–1331.
  • Liu J, Wan Y, Li S, et al. Identification of aberrantly methylated differentially expressed genes and associated pathways in endometrial cancer using integrated bioinformatic analysis[J]. Cancer Med. 2020;9(10):3522–3536.
  • El-Osaily HH, Ibrahim IH, Essawi ML, et al. Impact of miRNAs expression modulation on the methylation status of breast cancer stem cell-related genes[J]. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico, 2021. 10.1007/s12094-020-02542-0:
  • Agustriawan D, Huang CH, Sheu JJ, et al. DNA methylation-regulated microRNA pathways in ovarian serous cystadenocarcinoma: a meta-analysis[J]. Comput Biol Chem. 2016;65:154–164.