8,146
Views
12
CrossRef citations to date
0
Altmetric
Review

Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 9645-9661 | Received 09 Jan 2022, Accepted 02 Mar 2022, Published online: 18 Apr 2022

References

  • Manfrão-Netto JHC, Queiroz EB, de Oliveira Junqueira AC, et al. Genetic strategies for improving hyaluronic acid production in recombinant bacterial culture. J Appl Microbiol. 2021. DOI:10.1111/jam.15242
  • Dovedytis M, Liu JZ, Bartlett S. Hyaluronic acid and its biomedical applications: a review. Eng Regen. 2020;1:102–113.
  • Necas J, Bartosikova L, Brauner P, et al. Hyaluronic acid (hyaluronan): a review.Vet. Med. 2008;53(8):397–411.
  • Schiraldi C, Gatta AL, Rosa MD. Biotechnological production and application of Hyaluronan. Biopolymers. 2010;20:387–412.
  • Li C, Cao Z, Li W, et al. A review on the wide range applications of hyaluronic acid as a promising rejuvenating biomacromolecule in the treatments of bone related diseases. Int J Biol Macromol. 2020;165(Pt A):1264–1275.
  • Snetkov P, Zakharova K, Morozkina S, et al. Hyaluronic acid: the influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers. 2020;12(8):1800.
  • Chen F, Ni Y, Liu B, et al. Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbo Polym. 2017;166(15):31–44.
  • Fiorica C, Palumbo FS, Pitarresi G, et al. Hyaluronic acid and beta cyclodextrins films for the release of corneal epithelial cells and dexamethasone. Carbo Polym. 2017;166:281–290.
  • Hemshekhar M, Thushara RM, Chandranayaka S, et al. Emerging roles of hyaluronic acid bioscaffolds in tissue engineering and regenerative medicine. Int J Biol Macromol. 2016;86:917–919.
  • Larrañeta E, Henry M, Irwin NJ, et al. Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbo Polym. 2018;181:1194–1205.
  • Caló E, Khutoryanskiy VV. Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J. 2015;65:252–267.
  • Tripodo G, Trapani A, Torre ML, et al. Hyaluronic acid and its derivatives in drug delivery and imaging: recent advances and challenges. Eur J Pharm Biopharm. 2015;97(B):400–416.
  • Tiwari S, Bahadur P. Modified hyaluronic acid based materials for biomedical applications. Int J Biol Macromol. 2019;121:556–571.
  • Dodero A, Williams R, Gagliardi S, et al. A micro-rheological and rheological study of biopolymers solutions: hyaluronic acid. Carbohydr Polym. 2019;203:349–355.
  • Deangelis PL. Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow. Appl Microbiol Biotechnol. 2012;94:295–305.
  • Zhong W, Pang L, Feng HH, et al. Recent advantage of hyaluronic acid for anti-cancer application: a review of “3S” transition approach. Carbohydr Polym. 2020;238:11.
  • Maytin EV. Hyaluronan: more than just a wrinkle filler. Glycobiology. 2016;26(6):553–559.
  • Huang G, Huang H. Application of hyaluronic acid as carriers in drug delivery. Drug Deliv. 2018;25(1):766–772.
  • Krolikoski M, Monslow J, Puré E. The CD44-HA axis and inflammation in atherosclerosis: a temporal perspective. Matrix Biol. 2019;78-79:201–218.
  • Voigt J, Driver VR. Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: a systematic review and meta-analysis of randomized controlled trials. Wound Repair Regenerat. 2012;20(3):317–331.
  • Pauline J, Arif AA, Lee-Sayer SSM, et al. Hyaluronan and its interactions with immune cells in the healthy and inflamed lung. Front Immunol. 2018;9:2787.
  • Cui Z, Liao J, Cheong N, et al. The receptor for hyaluronan-mediated motility (CD168) promotes inflammation and fibrosis after acute lung injury. Matrix Biol. 2019;78–79:255–271.
  • Garantziotis S, Savani RC. Hyaluronan biology: a complex balancing act of structure, function, location and context. Matrix Biol. 2019;78–79:1–10.
  • Yao ZY, Qin J, Gong JS, et al. Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohyd Polym. 2021;264:118015.
  • Shah MV, Badle SS, Ramachandran KB. Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynthesis pathway. Biochem Eng J. 2013;80:53–60.
  • Mohan N, Tadi, SRR, Pavan, SS, Sivaprakasam, S. Deciphering the role of dissolved oxygen and N-acetyl glucosamine in governing higher molecular weight hyaluronic acid synthesis in Streptococcus zooepidemicuscell factory. Appl Microbiol Biotechnol. 2020;104(8):3349–3365.
  • Zheng Y, Cheng F, Zheng B, et al. Enhancing single-cell hyaluronic acid biosynthesis by microbial morphology engineering. Synth Syst Biotechnol. 2020;5(4):316–323.
  • Attia YA, Kobeasy MI, Samer M. Evaluation of magnetic nanoparticles influence on hyaluronic acid production from Streptococcus equi. Carbohydr. Polym. 2018;192:135–142.
  • Chong BF, Blank LM, Mclaughlin R, et al. Microbial hyaluronic acid production. Appl Microbiol Biotechnol. 2005;66:341–351.
  • Deangelis PL. Enzymological characterization of the Pasteurella multocida hyaluronic acid synthase. Biochem. 1996;35:9768–9771.
  • Vazquez JA, Montemayor MI, Fraguas J, et al. Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microb Cell Fact. 2010;9:46.
  • Blank LM, Mclaughlin RL, Nielsen LK. Stable production of hyaluronic acid in streptococcus zooepidemicus chemostats operated at high dilution rate. Biotechnol Bioeng. 2005;90(6):685–693.
  • Duan X, Yang L, Zhang X, et al. Effect of oxygen and shear stress on M of HA Px by Streptococcus zooepidemicus. J Microbiol Biotechnol. 2008;18(4):718–724.
  • Rangaswamy V, Jain D. An efficient process for production and purification of hyaluronic acid from Streptococcus equi subsp. zooepidemicus Biotechnol Lett. 2008;30(3):493–496.
  • Armstrong DC, Cooney MJ, Johns MR. Growth and amino acid requirements of hyaluronic-acid-producing Streptococcus zooepidemicus. Appl Microbiol Biotechnol. 1997;47:309–312.
  • Liu L, Du G, Chen J, et al. Enhanced hyaluronic acid production by a two-stage culture strategy based on the modeling of batch and fed-batch cultivation of Streptococcus zooepidemicus. Bioresour Technol. 2008;99(17):8532–8536.
  • Liu L, Du G, Chen J, et al. Comparative study on the influence of dissolved oxygen control approaches on the microbial hyaluronic acid production of Streptococcus zooepidemicus. Bioprocess Biosyst Eng. 2009a;32(6):755–763.
  • Liu L, Sun J, Xu W, et al. Modeling and optimization of microbial hyaluronic acid production by streptococcus zooepidemicus using radial basis function neural network coupling quantum-behaved particle swarm optimization algorithm. Biotechnol Prog. 2009b;25(6):1819–1825.
  • Chen SJ, Chen JL, Huang WC, et al. Fermentation process development for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. Korean J Chem Eng. 2009a;26:426–432.
  • Marcellin E, Chen W, Nielsen LK (2009). Microbial hyaluronic acid biosynthesis. Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives. Edited by Rehm BHA. Norfolk: Caister Academic Press. 163–180.
  • Huang WC, Chen SJ, Chen TL. Production of hyaluronic acid by repeated batch fermentation. Biochem Eng J. 2008;40(3):460–464.
  • Wang SP, Zhang JM, Wang YT, et al. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomed -Nanotechnol Biol Med. 2016;12(2):411–420.
  • Liu J, Wang Y, Li Z, et al. Efficient production of high-molecular-weight hyaluronic acid with a two-stage fermentation. RSC Adv. 2018;8(63):36167–36171.
  • Liu L, Liu Y, J L, et al. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact. 2011;10. 1–9.
  • Widner B, Behr R, Von Dollen S, et al. Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol. 2005;71(7):3747–3752.
  • Jing W, Deangelis PL. Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide. Glycobiology. 2000;10:883–889.
  • Jing W, Deangelis PL. Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. J Biol Chem. 2004;279:42345–42349.
  • Mao Z, Shin HD, Chen R. A recombinant E. coli bioprocess for hyaluronan synthesis. Appl Microbiol Biotechnol. 2009;84:63–69.
  • Yu H, Stephanopoulos G. Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng. 2008;10:24–32.
  • Oliveira JD, Carvalho LS, Gomes AMV, et al. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb Cell Fact. 2016;15(1):1–20.
  • Badri A, Raman K, Jayaraman G. Uncovering novel pathways for enhancing hyaluronan synthesis in recombinant Lactococcus lactis: Genome-scale metabolic modeling and experimental validation. Processes. 2019;7(6):343.
  • Jia YN, Zhu J, Chen XF, et al. Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresour Technol. 2013;132:427–431.
  • Chen WY, Marcellin E, Hung J, et al. Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus. J Biol Chem. 2009b;284(27):18007–18014.
  • Cheng FY, Yu HM, Stephanopoulos G. Engineering Corynebacterium glutamicumfor high-titer biosynthesis of hyaluronic acid. Metabol Eng. 2019;55:276–289.
  • Pourzardosht N, Rasaee MJ. Improved yield of high molecular weight hyaluronic acid production in a stable strain of Streptococcus zooepidemicusvia the elimination of the hyaluronidase-encoding gene. Mol Biotechnol. 2017;59(6):192–199.
  • Bicudo RCS, Santana MHA. Effects of organic solvents on hyaluronic acid nanoparticles obtained by precipitation and chemical crosslinking. J Nanosci Nanotech. 2012;12(3):2849–2857.
  • Cowman MK, Matsuoka S. Experimental approaches to hyaluronan structure. Carbo Res. 2005;340(5):791–809.
  • Cheng F, Gong Q, Yu H, et al. High-titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol J. 2016;11(4):574–584.
  • Jeong E, Shim WY, Kim JH. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. J Biotechnol. 2014;185:28–36.
  • Liu K, Catchmark JM. Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing Gluconacetobacter hansenii and Lactococcus lactis in a two-vessel circulating system. Bioresour Technol. 2019;290:121715.
  • Abdallah MM, Fernández N, Matias AA, et al. Hyaluronic acid and Chondroitin sulfate from marine and terrestrial sources: extraction and purification methods. Carbohydr Polym. 2020;243:116441.
  • Grand View Research. hyaluronic acid raw material market size, share & trends analysis report by application (ophthalmology, orthopedics, dermatology, drug delivery), By Region, And Segment Forecasts, 2018-2024. Accessed 02 Jan 2022. Available in: <https://www.grandviewresearch.com/industry-analysis/hyaluronic-acid-ha-raw-material-market>.
  • Sze JH, Brownlie JC, Love CA. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech. 2016;6(1):1–9.
  • Abdel-Mohsen AM, Hrdina R, Burgert L, et al. Green synthesis of hyaluronan fibers with silver nanoparticles. Carbohydr Polym. 2012;89(2):411–422.
  • Abdel-Mohsen AM, Pavliňák D, Čileková M, et al. Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: preparation and characterization. Int J Biol Macromol. 2019;139:730–739.
  • Xu X, Jha AK, Harrington DA, et al. Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter. 2012;8(12):3280–3294.
  • Allison DD, Grande-Allen KJ. Review. Hyaluronan: a powerful tissue engineering tool. Tissue Eng. 2006;12(8):2131–2140.
  • Fagien S, Cassuto D. Reconstituted injectable hyaluronic acid: expanded applications in facial aesthetics and additional thoughts on the mechanism of action in cosmetic medicine. Plast Reconstr Surg. 2012;30(1):208–217.
  • Kogan G, Soltés L, Stern R, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29(1):17–25.
  • Jagannath S, Ramachandran KB. Influence of competing metabolic processes on the molecular weight of hyaluronic acid synthesized by Streptococcus zooepidemicus. Biochem Eng J. 2010;48(2):148–158.
  • Tammi RH, Kultti A, Kosma VM, et al. Hyaluronan in human tumors: pathobiological and prognostic messages from cell-associated and stromalhyaluronan. Semin Cancer Biol. 2008;18(4):288–295.
  • Grand View Research. Hyaluronic acid market size, share & trends analysis report by application (dermal fillers, osteoarthritis (single injection, three injection, five injection), Ophthalmic, Vesicoureteral Reflux), By Region, And Segment Forecasts, 2020-2027. Accessed 04 Jan 2022. Available in: <https://www.grandviewresearch.com/industry-analysis/hyaluronic-acid-market>.
  • Mikulic MUS. Hyaluronic acid raw material market size 2014-2024, by application Hyaluronic acid raw material market size in the U. S from 2014 to 2024, by application. Statista. 2018;212:1–2.
  • Wong S. Total sales volume of the hyaluronic acid raw materials in China from 2014 to 2018. Statista. 2020;2018:2020–2021.
  • Blatter G, Jacquinet JC. The use of 2-deoxy-2-trichloroacetamido-D-glucopyranose derivatives in syntheses of hyaluronic acid-related tetra-, hexa-, and octa-saccharides having a methyl β-D-glucopyranosiduronic acid at the reducing end. Carbohydr Res. 1996;288(1):109–125.
  • Lu X, Kamat MN, Huang L, et al. Chemical synthesis of a hyaluronic acid decasaccharide. J Organic Chem. 2009;74(20):7608–7617.
  • Cerminati S, Leroux M, Anselmi P, et al. Low cost and sustainable hyaluronic acid production in a manufacturing platform based on Bacillus subtilis 3NA strain. Appl Microbiol Biotechnol. 2021;105(8):3075–3086.
  • Ferreira RG, Azzoni AR, Santana MHA, et al. Techno-economic analysis of a hyaluronic acid production process utilizing streptococcal fermentation. Processes. 2021;9(2):1–16.
  • Torres-Acosta MA, Castaneda-Aponte HM, Mora-Galvez LM, et al. Comparative economic analysis between endogenous and recombinant production of hyaluronic acid. Front Bioeng Biotechnol. 2021;9:1–14.
  • Wang Y, Wu H, Jiang XR, et al. Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metabol Eng. 2014;25:183–193.
  • Bi E, Lutkenhaus J. Cell-division inhibitors SULA and MINCD prevent formation of the FTSZ ring. J Bacteriol. 1993;175(4):1118–1125.
  • Jiang XR, Chen GQ. Morphology engineering of bacteria for bio-production. Biotechnol Adv. 2016;34(4):435–440.
  • Tan D, Wu Q, Chen JC, et al. Engineering HalomonasTD01 for the low-cost production of polyhydroxyalkanoates. Metabol Eng. 2014;26:34–47.
  • Yue HT, Ling C, Yang T, et al. A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant HalomonascampaniensisLS21 grown in mixed substrates. Biotechnol Biofuel. 2014;7:12.
  • Barcelos MCS, Vespermann KAC, Pelissari FM, et al. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutri. 2020;60(9):1475–1495.
  • Tammaro O, Costagliola Di Polidoro A, Romano E, et al. A microfluidic platform to design multimodal peg - crosslinked hyaluronic acid nanoparticles (PEG-cHANPs) for diagnostic applications. Sci Rep. 2020;10:6028.
  • Amado IR, Vázquez JA, Pastrana L, et al. Microbial production of hyaluronic acid from agro-industrial by-products: molasses and corn steep liquor. Biochem Eng J. 2021;117:181–187.
  • Balazs EA. Ultrapure hyaluronic acid and the use thereof. U S Appl. 1977;844(19):833.
  • Chahuki FF, Aminzadeh S, Jafarian V, et al. Hyaluronic acid production enhancement via genetically modification and culture medium optimization in Lactobacillus acidophilus. Int J Biol Macromol. 2019;121:870–881.
  • Chong BF, Nielsen LK. Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase. Biochem Eng J. 2003;16:153–162.
  • Im JH, Song JM, Kang JH, et al. Optimization of medium components for high-molecular-weight hyaluronic acid production by Streptococcus sp. ID9102 via a statistical approach. J Indust Microbiol Biotechnol. 2009;36(11):1337–1344.
  • Li J, Qiao M, Ji Y, et al. Chemical, enzymatic and biological synthesis of hyaluronic acids. Int J Biol Macromol. 2020;152:199–206.
  • Wang J, Liu D, Guan S, et al. Hyaluronic acid-modified liposomal honokiol nanocarrier: enhance anti-metastasis and antitumor efficacy against breast cancer. Carbohydr Polym. 2020;235:115981.
  • Westbrook AW, Ren X, Oh J, et al. Metabolic engineering to enhance heterologous production of hyaluronic acid in Bacillus subtilis. Metabol Eng. 2018;47:401–413.
  • Zhang LP, Huang H, Wang H, et al. Rapid evolution of hyaluronan synthase to improve hyaluronan production and molecular mass in Bacillus subtilis. Biotechnol Lett. 2016a;38(12):2103–2108.
  • Buffa R, Nesporova K, Basarabova I, et al. Synthesis and study of branched hyaluronic acid with potential anticancer activity. Carbohydr Polym. 2019;223:115047.
  • Ferreira RG , Azzoni, AR, Santana, MHA, Petrides, D. Techno-Economic Analysis of a Hyaluronic Acid Production Process Utilizing Streptococcal Fermentation. Processes . 2021;9:241. https://doi.org/10.3390/pr9020241.
  • Kim JH, Moon MJ, Kim DY, et al. Hyaluronic acid-based nanomaterials for cancer therapy. Polymers. 2018;10(10):15.
  • Pedron S, Wolter GL, Chen JWE, et al. Hyaluronic acid-functionalized gelatin hydrogels reveal extracellular matrix signals temper the efficacy of erlotinib against patient-derived glioblastoma specimens. Biomaterials. 2019;219:119371.
  • Zhang YL, Luo KL, Zhao QS, et al. Genetic and biochemical characterization of genes involved in hyaluronic acid synthesis in Streptococcus zooepidemicus. Appl Microbiol Biotechnol. 2016b;100(8):3611–3620.
  • Zhu J, Tang X, Jia Y, et al. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery – a review. Int J Pharm. 2020;578:119127.