4,499
Views
3
CrossRef citations to date
0
Altmetric
Review

Bioprospecting and biotechnological insights into sweet-tasting proteins by microbial hosts―a review

ORCID Icon, , , , ORCID Icon &
Pages 9816-9829 | Received 09 Feb 2022, Accepted 25 Mar 2022, Published online: 17 Apr 2022

References

  • Lichtenstein AH, Karpyn A. History and development of the 2015-2020 dietary guidelines for Americans. Book Chapter. 2018: 31–46
  • Joseph JA, Akkermans S, Nimmegeers P, et al. Bioproduction of the recombinant sweet protein thaumatin: current state of the art and perspectives. Front Microbiol. 2019;10:695.
  • Brisbois TD, Marsden SL, Anderson GH, et al. Estimated intakes and sources of total and added sugars in the Canadian diet. Nutrients. 2014;6(5):1899–1912
  • You A. Dietary guidelines for Americans. Texas, United States: US Department of Health and Human Services and US Department of Agriculture; 2015.
  • Agboola DA, Fawibe OO, Ogunyale OG, et al. Botanical and protein sweeteners. Journal of Advanced Laboratory Research in Biology. 2014;5(4):169–187.
  • Kelada KD, Tusé D, Gleba Y, et al. Process Simulation and Techno-Economic Analysis of Large-Scale Bioproduction of Sweet Protein Thaumatin II. Foods. 2021;10(4):838.
  • Pearlman M, Obert J, Casey L. The association between artificial sweeteners and obesity. Curr Gastroenterol Rep. 2017;19(12):64.
  • Whitehouse CR, Boullata J, McCauley LA. The potential toxicity of artificial sweeteners. AAOHN J. 2008;56(6):251–261.
  • Kokotou MG, Asimakopoulos AG, Thomaidis NS. Artificial sweeteners as emerging pollutants in the environment: analytical methodologies and environmental impact. Anal Methods. 2012;4(10):3057–3070.
  • Sylvetsky AC, Rother KI. Trends in the consumption of low-calorie sweeteners. Physiol Behav. 2016;164:446–450.
  • García-Almeida JM, Cornejo-Pareja IM, Muñoz-Garach A, et al. Sweeteners: regulatory Aspects 27. Sweeteners. 2018: 613
  • Nelson G, Chandrashekar J, Hoon MA, et al. An amino-acid taste receptor. Nature. 2002;416(6877):199–202.
  • Vigues S, Dotson CD, Munger SD. The receptor basis of sweet taste in mammals. Chemosensory Systems in Mammals, Fishes, and Insects. 2008: 20–23
  • Fernstrom JD, Munger SD, Sclafani A, et al. Mechanisms for sweetness. J Nutr. 2012;142(6):1134S–1141S.
  • Saraiva A, Carrascosa C, Raheem D, et al. Natural sweeteners: the relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. Int J Environ Res Public Health. 2020;17(17):6285.
  • Marcus JB. Aging, Nutrition and Taste: nutrition, Food Science and Culinary Perspectives for Aging Tastefully. London, United Kingdom: Academic Press; 2019.
  • Belloir C, Neiers F, Briand L. Sweeteners and sweetness enhancers. Curr Opin Clin Nutr Metab Care. 2017;20(4):279–285.
  • Laffitte A, Neiers F, Briand L. Characterization of taste compounds: chemical structures and sensory properties. Guichard E, Le Bon AM, Morzel M, et al. Oxford: Wiley-Blackwell; 2016.
  • World Health Organization. Guideline: sugars intake for adults and children. Geneva, Switzerland: World Health Organization; 2015.
  • Grembecka M. Natural sweeteners in a human diet. Roczniki Państwowego Zakładu Higieny. 2015;66(3):1516.
  • Kroger M, Meister K, Kava R. Low‐calorie sweeteners and other sugar substitutes: a review of the safety issues. Compr Rev Food Sci Food Saf. 2006;5(2):35–47.
  • Varelis P, Melton L, Shahidi F. Encyclopedia of Food chemistry. Cambridge, Massachusetts, United States: Elsevier; 2018.
  • Carocho M, Morales P, Ferreira IC. Sweeteners as food additives in the XXI century: a review of what is known, and what is to come. Food Chem Toxicol. 2017;107:302–317.
  • Shah R, De Jager LS. Recent analytical methods for the analysis of sweeteners in food: a regulatory perspective. Food safety: innovative analytical tools for food safety assessment. In: Hoboken, NJ and Scrivener publishing LLC, Beverly. 1st edn ed. Beverly, Massachusetts, United States: John Wiley & Sons, Inc; 2016. p. 13–32.
  • Mortensen A. Sweeteners permitted in the European Union: safety aspects. Scandinavian Journal of Food and Nutrition. 2006;50(3):104–116
  • Jiang P, Ji Q, Liu Z, et al. The cysteine-rich region of T1R3 determines responses to intensely sweet proteins. J Biol Chem. 2004;279(43):45068–45075.
  • Ohta K, Masuda T, Ide N, et al. Critical molecular regions for elicitation of the sweetness of the sweet‐tasting protein, thaumatin I. FEBS J. 2008;275(14):3644–3652.
  • van der Wel H, Loeve K. Isolation and characterization of thaumatin I and II, the sweet‐tasting proteins from Thaumatococcus daniellii Benth. Eur J Biochem. 1972;31(2):221–225.
  • Hellfritsch C, Brockhoff A, Stähler F, et al. Human psychometric and taste receptor responses to steviol glycosides. J Agric Food Chem. 2012;60(27):6782–6793.
  • Pronin AN, Tang H, Connor J, et al. Identification of ligands for two human bitter T2R receptors. Chem Senses. 2004;29(7):583–593.
  • Kinghorn AD, Kaneda N, Baek NI, et al. Noncariogenic intense natural sweeteners. Med Res Rev. 1998;18(5):347–360.
  • Zemanek EC, Wasserman BP. Issues and advances in the use of transgenic organisms for the production of thaumatin, the intensely sweet protein from Thaumatococcus danielli. Crit Rev Food Sci Nutr. 1995;35(5):455–466.
  • Smith J, Hong-Shum L. Food additives data book. Beverly, Massachusetts, United States: John Wiley & Sons; 2011.
  • Etheridge K. The sales and marketing of talin. (1994). In “Thaumatin”, eds. Witty, M. and Higginbotham, JD. Boca Raton, Florida, United States: CRC Press.
  • Global Data, 2015, www.globaldata.com/global-data-2015
  • Recombinant Protein Market Analysis, (2018). Available online at: https://www.coherentmarketinsights.com/market-insight/recombinant-protein-market-1516 [Last accessed 2022 Mar 11].
  • Demain AL, Vaishnav P. Production of recombinant proteins by microbes and higher organisms. Biotechnol Adv. 2009;27(3):297–306.
  • Faus I, Pati-o C, Del R’o JL, et al. Expression of a synthetic gene encoding the sweet-tasting protein thaumatin in the filamentous fungus Penicillium roquefortii. Biotechnol Lett. 1997;19(12):1185–1191.
  • Hahm YT, Batt CA. Expression and secretion of thaumatin from Aspergillus oryzae. Agric Biol Chem. 1990;54(10):2513–2520.
  • Illingworth C, Larson G, Hellekant G. Secretion of the sweet-tasting plant protein thaumatin by Streptomyces lividans. J Ind Microbiol. 1989;4(1):37–42.
  • Weickmann JL. High level expression of thaumatin in Saccharomyces cerevisiae. Boca Raton, Florida, United States: CRC Press. Thaumatin. 151–169. 1994.
  • Daniell S, Mellits KH, Faus I, et al. Refolding the sweet-tasting protein thaumatin II from insoluble inclusion bodies synthesised in Escherichia coli. Food Chem. 2000;71(1):105–110.
  • Hung CY, Cheng LH, Yeh CM. Functional expression of recombinant sweet-tasting protein brazzein by Escherichia coli and Bacillus licheniformis. Food Biotechnol. 2019;33(3):251–271.
  • Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2006;72(2):211–222.
  • Swartz JR. Escherichia coli recombinant DNA technology. Escherichia coli and Salmonella: cellular and molecular biology. 1996;2:1693–1711.
  • Jenkins N, Curling EM. Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb Technol. 1994;16(5):354–364.
  • Chen R. Bacterial expression systems for recombinant protein production: e. coli and beyond. Biotechnol Adv. 2012;30(5):1102–1107.
  • Yeh CM, Kao BY, Peng HJ. Production of a recombinant type 1 antifreeze protein analogue by L. lactis and its applications on frozen meat and frozen dough. J Agric Food Chem. 2009;57(14):6216–6223.
  • Faus I, Patiño C, Del R’o JL, et al. Expression of a Synthetic Gene Encoding the Sweet-Tasting Protein Thaumatin in Escherichia coli. Biochem Biophys Res Commun. 1996;229(1):121–127.
  • Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science. 1996;274(5287):546–567.
  • Tang H, Bao X, Shen Y, et al. Engineering protein folding and translocation improves heterologous protein secretion in Saccharomyces cerevisiae. Biotechnol Bioeng. 2015;112(9):1872–1882.
  • Tyo KEJ, Liu Z, Magnusson Y, et al. Impact of protein uptake and degradation on recombinant protein secretion in yeast. Appl Microbiol Biotechnol. 2014;98(16):7149–7159.
  • Mattanovich D, Sauer M, Gasser B. Yeast biotechnology: teaching the old dog new tricks. Microb Cell Fact. 2014;13(1):1–5.
  • Edens L, Van der Wel H. Microbial synthesis of the sweet-tasting plant protein thaumatin. Trends Biotechnol. 1985;3(3):61–64.
  • Lee H-M, Park S-W, Lee S-J, et al. Optimized production and quantification of the tryptophan-deficient sweet-tasting protein brazzein in Kluyveromyces lactis. Preparative Biochemistry and Biotechnology. 2019;49(8):790–799
  • Park SW, Kang BH, Lee HM, et al. Efficient brazzein production in yeast (Kluyveromyces lactis) using a chemically defined medium. Bioprocess Biosyst Eng. 2021;44(4):913–925.
  • Böer E, Gellissen G, Kunze G. Arxula adeninivorans. Production of recombinant proteins. 2005: 89–110
  • Gellissen G, Ed. Production of recombinant proteins: novel microbial and eukaryotic expression systems. Beverly, Massachusetts, United States: John Wiley & Sons; 2006.
  • Kang HA, Gellissen G. Hansenula polymorpha. Production of Recombinant Proteins. 2005: 111–142
  • Madzak C, Nicaud JM, Gaillardin C, et al. Production of recombinant proteins: novel microbial and eukaryotic expression systems. Wiley-VCH: Weinheim. 2005. 163–189. 10.1002/3527603670.ch8
  • Cereghino GPL, Cereghino JL, Ilgen C, et al. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol. 2002;13(4):329–332.
  • Hellwig S, Emde F, Raven NP, et al. Analysis of single‐chain antibody production in Pichia pastoris using on‐line methanol control in fed‐batch and mixed‐feed fermentations. Biotechnol Bioeng. 2001;74(4):344–352.
  • Macauley‐Patrick S, Fazenda ML, McNeil B, et al. Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005;22(4):249–270
  • Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev. 2000;24(1):45–66.
  • Inan M, Aryasomayajula D, Sinha J, et al. Enhancement of protein secretion in Pichia pastoris by overexpression of protein disulfide isomerase. Biotechnol Bioeng. 2006;93(4):771–778.
  • Robinson AS, Hines V, Wittrup KD. Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae. Bio technology. 1994;12(4):381–384
  • Caldwell JE, Abildgaard F, Džakula Ž, et al. Solution structure of the thermostable sweet-tasting protein brazzein. Nat Struct Biol. 1998;5(6):427–431.
  • Assadi-Porter FM, Aceti DJ, Cheng H, et al. Efficient production of recombinant brazzein, a small, heat-stable, sweet-tasting protein of plant origin. Arch Biochem Biophys. 2000;376(2):252–258.
  • Ming D, Hellekant G. Brazzein, a new high-potency thermostable sweet protein from Pentadiplandra brazzeana B. FEBS Lett. 1994;355(1):106–108.
  • Tomes DT. Methods and compositions for production of plant foodstuffs with enhanced sweet component flavor. PCT Patent WO. 1997;97:42333.
  • Hellekant BG, Ming D (1994). Brazzein sweetener. US Patent, 5346998.
  • Berlec A, Jevnikar Z, Majhenič AČ, et al. Expression of the sweet-tasting plant protein brazzein in Escherichia coli and Lactococcus lactis: a path toward sweet lactic acid bacteria. Appl Microbiol Biotechnol. 2006;73(1):158–165.
  • Yan S, Song H, Pang D, et al. Expression of plant sweet protein brazzein in the milk of transgenic mice. Plos one. 2013;8(10):e76769
  • Yun CR, Kong JN, Chung JH, et al. Improved secretory production of the sweet-tasting protein, brazzein, in Kluyveromyces lactis. J Agric Food Chem. 2016;64(32):6312–6316.
  • Chung JH, Kong JN, Choi HE, et al. Antioxidant, anti-inflammatory, and anti-allergic activities of the sweet-tasting protein brazzein. Food Chem. 2018;267:163–169.
  • Jo HJ, Noh JS, Kong KH. Efficient secretory expression of the sweet-tasting protein brazzein in the yeast Kluyveromyces lactis. Protein Expr Purif. 2013;90(2):84–89.
  • Lee J-W, Cha J-E, Jo H-J, et al. Multiple mutations of the critical amino acid residues for the sweetness of the sweet-tasting protein, brazzein. Food Chem. 2013;138(2–3):1370–1373.
  • Jung YJ, Kang KK. Stable expression and characterization of brazzein, thaumatin and miraculin genes related to sweet protein in transgenic lettuce. Journal of Plant Biotechnology. 2018;45(3):257–265
  • Lamphear BJ, Barker DK, Brooks CA, et al. Expression of the sweet protein brazzein in maize for production of a new commercial sweetener. Plant Biotechnol J. 2004;3(1):103–114.
  • Lee YR, Akter S, Lee IH, et al. Stable expression of brazzein protein, a new type of alternative sweetener in transgenic rice. Journal of Plant Biotechnology. 2018;45(1):63–70
  • Kondo K, Miura Y, Sone H, et al. High-level expression of a sweet protein, monellin, in the food yeast Candida utilis. Nat Biotechnol. 1997;15(5):453–457.
  • Liu X, Maeda S, Hu Z, et al. Purification, complete amino acid sequence and structural characterization of the heat‐stable sweet protein, mabinlin II. Eur J Biochem. 1993;211(1‐2):281–287.
  • Nirasawa S, Nishino T, Katahira M, et al. Structures of heat‐stable and unstable homologues of the sweet protein mabinlin. The difference in the heat stability is due to replacement of a single amino acid residue. Eur J Biochem. 1994;223(3):989–995.
  • Sun S, Xiong L, Hu Z, et al. (1997) Recombinant sweet protein mabinlin. PCT Patent WO 97/00945
  • Theerasilp S, Hitotsuya H, Nakajo S, et al. Complete amino acid sequence and structure characterization of the taste-modifying protein, miraculin. J Biol Chem. 1989;264(12):6655–6659.
  • Abad S, Nahalka J, Winkler M, et al. High-level expression of Rhodotorula gracilis d-amino acid oxidase in Pichia pastoris. Biotechnol Lett. 2011;33(3):557–563.
  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Scientific Opinion on the Safety and Efficacy of thaumatin for all animal species. EFSA J. 2011;9(9):2354.
  • Gellissen G, Kunze G, Gaillardin C, et al. New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica–a comparison. FEMS Yeast Res. 2005a;5(11):1079–1096.
  • Gellissen G, Strasser AW, Suckow M. Key and criteria to the selection of an expression platform. Production of recombinant proteins–Novel microbial and eukaryotic expression systems. 2005b: 1–5
  • Masuda T. Sweet-tasting protein thaumatin: physical and chemical properties. In: Merillon J-M, Ramawat KG, editors. Sweeteners: Pharmacology, Biotechnology, and Applications, Springer, Cham. 2018. p. 493–523.
  • Ohta K, Masuda T, Tani F, et al. The cysteine-rich domain of human T1R3 is necessary for the interaction between human T1R2–T1R3 sweet receptors and a sweet-tasting protein, thaumatin. Biochem Biophys Res Commun. 2011b;406(3):435–438.
  • Chen Z, Cai H, Lu F, et al. High-level expression of a synthetic gene encoding a sweet protein, monellin, in Escherichia coli. Biotechnol Lett. 2005;27(22):1745–1749.
  • Edens L, Heslinga L, Klok R, et al. Cloning of cDNA encoding the sweet-tasting plant protein thaumatin and its expression in Escherichia coli. Gene. 1982;18(1):1–12
  • Faus I. Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl Microbiol Biotechnol. 2000;53(2):145–151.
  • Faus I, Del Moral C, Adroer N, et al. Secretion of the sweet-tasting protein thaumatin by recombinant strains of Aspergillus Niger var. awamori. Appl Microbiol Biotechnol. 1998;49(4):393–398.
  • Harada S, Otani H, Maeda S, et al. Crystallization and preliminary X-ray diffraction studies of curculin: a new type of sweet protein having taste-modifying action. J Mol Biol. 1994;238(2):286–287.
  • Healey RD, Lebhar H, Hornung S, et al. An improved process for the production of highly purified recombinant thaumatin tagged-variants. Food Chem. 2017;237:825–832.
  • Higginbotham JD, Snodin DJ, Eaton KK, et al. Safety evaluation of thaumatin (Talin protein). Food Chem Toxicol. 1983;21(6):815–823.
  • Inglett GE, MAY JF. Serendipity berries–source of a new intense sweetener. J Food Sci. 1969;34(5):408–411.
  • Jain T, Grover K. Sweeteners in human nutrition. Int J Health Sci Res. 2015;5(5):439–451.
  • Kim SH, Kang CH, Kim R, et al. Redesigning a sweet protein: increased stability and renaturability. Protein Eng Des Sel. 1989;2(8):571–575.
  • Kurihara Y. Sweet proteins in general. Thaumatin. 1994;1–18.
  • Maehashi K, Udaka S. Sweetness of lysozymes. Biosci Biotechnol Biochem. 1998;62(3):605–606.
  • Masuda T, Tamaki S, Kaneko R, et al. Cloning, expression and characterization of recombinant sweet‐protein thaumatin II using the methylotrophic yeast Pichia pastoris. Biotechnol Bioeng. 2004;85(7):761–769.
  • Morris JA, Cagan RH. Purification of monellin, the sweet principle of Dioscoreophyllum cumminsii. Biochim Biophys Acta. 1972;261(1):114–122.
  • Nabors L, Gelardi R. Alternative sweeteners: an overview. Alternative Sweeteners. 2001;2:1–10.
  • Neiers F, Belloir C, Poirier N, et al. Comparison of different signal peptides for the efficient secretion of the sweet-tasting plant protein brazzein in Pichia pastoris. Life. 2021;11(1):46.
  • Ohta K, Masuda T, Tani F, et al. Introduction of a negative charge at Arg82 in thaumatin abolished responses to human T1R2–T1R3 sweet receptors. Biochem Biophys Res Commun. 2011a;413(1):41–45.
  • Overbeeke N. Synthesis and processing of thaumatin in yeast. Biotechnology. 1989;13:305–318.
  • Takahashi N, Hitotsuya H, Hanzawa H, et al. Structural study of asparagine-linked oligosaccharide moiety of taste-modifying protein, miraculin. J Biol Chem. 1990;265(14):7793–7798.
  • Theerasilp S, Kurihara Y. Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit. J Biol Chem. 1988;263(23):11536–11539.
  • Wel HVD, Larson G, Hladik A, et al. Isolation and characterization of pentadin, the sweet principle of Pentadiplandra brazzeana Baillon. Chem Senses. 1989;14(1):75–79.
  • Yamashita H, Theerasilp S, Aiuchi T, et al. Purification and complete amino acid sequence of a new type of sweet protein taste-modifying activity, curculin. J Biol Chem. 1990;265(26):15770–15775.