3,864
Views
9
CrossRef citations to date
0
Altmetric
Research Paper

Bacterial Cellulose Production from agricultural Residues by two Komagataeibacter sp. Strains

ORCID Icon, , , & ORCID Icon
Pages 10010-10025 | Received 06 Feb 2022, Accepted 27 Mar 2022, Published online: 13 Apr 2022

References

  • McNamara JT, Morgan JL, Zimmer J. A molecular description of cellulose biosynthesis. Annu Rev Biochem. 2015;84(1):895–921.
  • Moniri M, Moghaddam AB, Azizi S, et al. Production and status of bacterial cellulose in biomedical engineering. Nanomaterials. 2017;7(257):1–26.
  • Bayon B, Berti IR, Gagneten AM, et al. 2018. Waste to wealth. Singhania RK, Rani R, Kumar RP, et al ed. January
  • Brown RM. Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci A Polym Chem. 2004;42(3):487–495.
  • Deinema MH, Zevenhuizen LP. Formation of cellulose fibrils by gram-negative bacteria and their role in bacterial flocculation. Arch Microbiol. 1971;78(1):42–51.
  • Morgan JLW, Strumillo J, Zimmer J. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature. 2013;493(7431):181–186.
  • Tang WH, Jia SR, Jia YY, et al. The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol. 2010;26(1):125–131.
  • Mohammadkazemi F, Azin M, Ashori A. Production of bacterial cellulose using different carbon sources and culture media. Carbohydr Polym. 2015;117:518–523.
  • Tanskul S, Amornthatree K, Jaturonlak N. A new cellulose-producing bacterium, rhodococcus sp. MI 2: screening and optimization of culture conditions. Carbohydr Polym. 2013;92(1):421–428.
  • Abol-Fotouh D, Hassan MA, Shokry H, et al. Bacterial nanocellulose from agro-industrial wastes: low-cost and enhanced production by komagataeibacter saccharivorans MD1. Sci Rep. 2020;10(1):3491.
  • Adebayo-Tayo BC, Akintunde MO, Alao SO. Comparative effect of agrowastes on bacterial cellulose production by acinetobater sp BAN1 and Acetobacter pasteurianus PW1. Turkish J Agric Nat Sci. 2017;4(2):145–154.
  • Gomes FP, Silva NHCS, Trovatti E, et al. Production of bacterial cellulose by gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy. 2013;55:205–211.
  • Kurosumi A, Sasaki C, Yamashita Y, et al. Utilization of various fruit juices as carbon source for production of bacterial cellulose by acetobacter xylinum NBRC 13693. Carbohydr Polym. 2009;76(2):333–335.
  • Sar T, Akbas MY. Potential use of olive oil mill wastewater for bacterial cellulose production. Bioengineered. 2022;13(3):7659–7669.
  • Reshmy R, Eapen P, Deepa T, et al. Bacterial nanocellulose: engineering, production, and applications. Bioengineered. 2021;12(2):11463–11483.
  • Millati R, Cahyono RB, Ariyanto T, et al. Chapter 1 – agricultural. In: Taherzadeh MJ, Bolton K, Wong J, et al, editors. Industrial, municipal, and forest wastes: an overview. Elsevier; 2019. p. 1–22. Sustainable Resource Recovery and Zero Waste Approaches.
  • FAO, 2017. GIEWS - Global Information and Early Warning System: country briefs, Nigeria. http://www.fao.org/giews/countrybrief/country.jsp?code=NGA
  • Boluwade E. Sugar annual report (NI2021-0003). approved by Gerald Smith. In: Global Agricultural Information Network (GAIN), United States Department of Agriculture (USDA), Foreign agricultural services. Lagos Nigeria; 2021. p. 1–10.
  • Ogwo JN, Dike OC, Matthew SC, et al. Overview of biomass energy production in Nigeria: implication and challenges. Asian J Nat Appl Sci. 2012;1(4):48–51.
  • Mohlala LM, Bodunrin MO, Awosusi AA, et al. Beneficiation of corncob and sugarcane bagasse for energy generation and materials development in Nigeria and South Africa : a short overview. Alexandria Eng J. 2016;55(3):3025–3036.
  • Liu H, Zhang YX, Hou T, et al. Mechanical deconstruction of corn stover as an entry process to facilitate the microwave-assisted production of ethyl levulinate. Fuel Process Technol. 2018;174:53–60.
  • Kucharska K, Rybarczyk P, Hołowacz I, et al. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules. 2018;23(11):1–32.
  • Al-Abdallah W, Dahman Y. Production of green biocellulose nanofibers by Gluconacetobacter xylinus through utilising the renewable resources of agriculture residues. Bioprocess Biosyst Eng. 2013;36(11):1735–1743.
  • Huang C, Yang XY, Xiong L, et al. Utilization of corncob acid hydrolysate for bacterial cellulose production by Gluconacetobacter xylinus. Appl Biochem Biotechnol. 2015;175(3):1678–1688.
  • Cheng Z, Yang R, Liu X. Production of bacterial cellulose by acetobacter xylinum through utilizing acetic acid hydrolysate of bagasse as low-cost carbon source. BioResources. 2017;12(1):1190–1200.
  • Yan Y, Zhang C, Lin Q, et al. Microwave-Assisted oxalic acid pretreatment for the enhancing of enzyme hydrolysis in the production of xylose and arabinose from bagasse. Molecules. 2018;23(4):1–13.
  • Imman S, Laosiripojana N, Champreda V. Effect of liquid hot water pretreatment on enzymatic hydrolysis and physicochemical changes of corncobs. Appl Biochem Biotechnol. 2018;184(2):432–443.
  • Nair RB, Lundin M, Brandberg TL, et al. Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Ind Crops Prod. 2015;69:314–323.
  • Diba F, Alam F, Talukder AA. Screening of acetic acid producing microorganisms from decomposed fruits for vinegar production. Adv Microbiol. 2015;5(5):291–297.
  • Dubey S, Singh J, Singh RP. Biotransformation of sweet lime pulp waste into high-quality nanocellulose with an excellent productivity using komagataeibacter europaeus SGP37 under static intermittent fed-batch cultivation. Bioresour Technol. 2018;247:73–80.
  • Hestrin S, Schramm M. Synthesis of cellulose by acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J. 1954;58(2):345–352.
  • Yamada Y, Yukphan P, LanVu HT, et al. Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol. 2012;58(5):397–404.
  • Sluiter A, Hames B, Ruiz R, et al. 2012. NREL laboratory analytical procedure for determination of structural carbohydrates and Lignin in biomass. Technical Report; NREL/TP-510-42618.
  • Kumar P, Barrett DM, Delwiche MJ, et al. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009;48(8):3713–3729.
  • Bae SO, Shoda M. Production of bacterial cellulose by Acetobacter xylinum BPR2001 using molasses medium in a jar fermentor. Appl Microbiol Biotechnol. 2005;67(1):45–51.
  • Castro C, Zuluaga R, Alvarez C, et al. Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym. 2012;89(4):1033–1037.
  • Mohite BV, Salunke BK, Patil SV. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions. Appl Biochem Biotechnol. 2013;169(5):1497–1511.
  • Qi GX, Luo MT, Huang C, et al. Comparison of bacterial cellulose production by Gluconacetobacter xylinus on bagasse acid and enzymatic hydrolysates. J Appl Polym Sci. 2017;134(28):45066–45072.
  • Huang C, Yang XX, Guo L, et al. Using wastewater after lipid fermentation as substrate for bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym. 2016;136:198–202.
  • Çakar F, Özer I, Aytekin AO, et al. Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Carbohydr Polym. 2014;106:7–13.
  • Pacheco G, Nogueira CR, Meneguin AB, et al. Development and characterisation of bacterial cellulose produced by cashew tree residues as alternative carbon source. Ind Crops Prod. 2017;107:13–19.
  • Zhao H, Li J, Zhu K. Bacterial cellulose production from wastes products and fermentation conditions optimisation. Mat Sci Eng. 2018;394(2):1–6.
  • Ruka DR, Simon GP, Dean KM. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym. 2012;89(2):613–622.
  • Krystynowicz A, Czaja W, Polomorski L, et al. Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol. 2002;29(4):189–195.
  • Khattak WA, Khan T, Ul-Islam M, et al. Production, characterization and biological features of bacterial cellulose from scum obtained during preparation of sugarcane jaggery (gur). J Food Sci Technol. 2015;52(12):8343–8349.
  • Aydın YA, Aksoy ND. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: gluconacetobacter hansenii P2A. Appl Microbiol Biotechnol. 2014;98(3):1065–1075.
  • Son HJ, Kim HG, Kim KK, et al. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol. 2003;86(3):215–219.
  • Costa AFS, Almeida FCG, Vinhas GM, et al. Production of bacterial cellulose by gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front Microbiol. 2017;8:2027–2039.
  • Jung HI, Jeong JH, Lee OM, et al. Influence of glycerol on production and structural–physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks. Bioresour Technol. 2010;101(10):3602–3608.
  • Çoban EP, Biyik H. Evaluation of different pH and temperatures for bacterial cellulose production in HS (Hestrin-Scharmm) medium and beet molasses medium. Afr J Microbiol Res. 2011;5:1037–1045.
  • Castro C, Zuluaga R, Putaux J-L, et al. Structural characterization of bacterial cellulose produced by Gluconacetobacter swingsii sp. from Colombian agroindustrial wastes. Carbohydr Polym. 2011;84(1):96–102.
  • Mohite BV, Patil SV. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529. Carbohydr Polym. 2014;106:132–141.
  • Thorat MN, Dastager SG. High yield production of cellulose by a Komagataeibacter rhaeticus PG2 strain isolated from pomegranate as a new host. Royal Soc Chem Adv. 2018;8:29797–29805.
  • Andritsou, de Melo ME, Tsouko E, et al. Synthesis and characterisation of bacterial cellulose from citrus-based sustainable resources. ACS Omega. 2018;3(8):10365–10373.
  • Dayal MS, Goswami N, Sahai A, et al. Effect of media components on cell growth and bacterial cellulose production from acetobacter aceti MTCC 2623. Carbohydr Polym. 2013;94(1):12–16.
  • Machado RTA, Gutierrez J, Tercjak A, et al. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production Carbohydr Polym. 2016;152:841–849.
  • Ul-Islam M, Khan T, Park JK. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym. 2012;88(2):596–603.
  • Zhong C, Zhang GC, Liu M, et al. Metabolic flux analyses of gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol. 2013;97(14):6189–6199.
  • Ha JH, Shah N, Ul-Islam M, et al. Bacterial cellulose production from a single sugar α-linked glucuronic acid-based oligosaccharide. Process Biochem. 2011;46(9):1717–1723.
  • Shezad O, Khan S, Khan T, et al. Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym. 2010;82(1):173–180.
  • Almeida IF, Pereira T, Silva NH, et al. Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. European Journal of Pharmaceutics and Biopharmaceutics. 2014;86(3):332–336.