2,301
Views
2
CrossRef citations to date
0
Altmetric
Review

The role of long non-coding RNA FGD5-AS1 in cancer

, , , , , , , , & show all
Pages 11026-11041 | Received 09 Jan 2022, Accepted 13 Apr 2022, Published online: 27 Apr 2022

References

  • Wong C-M, H-c TF, O-l NI. Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications [J]. Nat Rev Gastroenterol Hepatol. 2018;15(3):137–151.
  • Böhmdorfer G, Sethuraman S, J RM, et al. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin [J]. Elife. 2016; 5 :e19092.
  • Anastasiadou E, S JL, J SF. Non-coding RNA networks in cancer [J]. Nat Rev Cancer. 2018;18(1):5–18.
  • W VK, P PC. Transcriptional regulatory functions of nuclear long noncoding RNAs [J]. Trends Genet. 2014;30(8):348–355.
  • Chen -L-L. Linking long noncoding RNA localization and function [J]. Trends Biochem Sci. 2016;41(9):761–772.
  • Ma Y, B F, Z R, et al. Long noncoding RNA DANCR contributes to docetaxel resistance in prostate cancer through targeting the miR-34a-5p/JAG1 pathway [J]. Onco Targets Ther. 2019;12:5485–5497.
  • J K, Piao H-L, B-j K, et al. Long noncoding RNA MALAT1 suppresses breast cancer metastasis [J]. Nat Genet. 2018;50(12):1705–1715. DOI:10.1038/s41588-018-0252-3.
  • Zhuo W, Y L, Li S, et al. Long noncoding RNA GMAN, Up-regulated in gastric cancer tissues, Is associated with metastasis in patients and promotes translation of Ephrin A1 by competitively binding GMAN-AS [J]. Gastroenterology. 2019;156(3):676-691.
  • Zhou Y, Tian B, Tang J, et al. SNHG7: a novel vital oncogenic lncRNA in human cancers [J]. Biomed Pharmacothe. 2020;124:109921.
  • Liao Z, H N, Wang Y, et al. The emerging landscape of long non-coding RNAs in colorectal cancer metastasis [J]. Front Oncol. 2021;11:641343.
  • A FV, E LI. Long non-coding RNAs in cisplatin resistance in Osteosarcoma [J]. Curr Treat Options Oncol. 2021;22(5):41.
  • C-g L, Li J, Xu Y, et al. Long non-coding RNAs and circular RNAs in tumor angiogenesis: from mechanisms to clinical significance [J]. Mol Ther Oncolytics. 2021;22:336–354.
  • Ghafouri-Fard S, Shoorei H, Taheri M. The role of long non-coding RNAs in cancer metabolism: a concise review [J]. Front Oncol. 2020;10:555825.
  • Huang X, Xiao R, S P, et al. Uncovering the roles of long non-coding RNAs in cancer stem cells [J]. J Hematol Oncol. 2017;10(1):62. DOI:10.1186/s13045-017-0428-9.
  • Kurogane Y, Miyata M, Kubo Y, et al. FGD5 mediates proangiogenic action of vascular endothelial growth factor in human vascular endothelial cells [J]. Arterioscler Thromb Vasc Biol. 2012;32(4):988–996. DOI:10.1161/ATVBAHA.111.244004.
  • Valla M, Mjønes P, Engstrøm M, et al. Characterization of FGD5 expression in primary breast cancers and lymph node metastases [J]. J Histochem Cytochem. 2018;66(11):787–799. DOI:10.1369/0022155418792032.
  • Heldin J, O’callaghan P, Hernández Vera R, et al. FGD5 sustains vascular endothelial growth factor A (VEGFA) signaling through inhibition of proteasome-mediated VEGF receptor 2 degradation [J]. Cell Signal. 2017;40:125–132.
  • Cheng C, Haasdijk R, Tempel D, et al. Endothelial cell-specific FGD5 involvement in vascular pruning defines neovessel fate in mice [J]. Circulation. 2012;125(25):3142–3158. DOI:10.1161/CIRCULATIONAHA.111.064030.
  • Li S, X L, Li H, et al. Integrated analysis of long noncoding RNA-associated competing endogenous RNA network in periodontitis [J]. J Periodontal Res. 2018;53(4):495–505. DOI:10.1111/jre.12539.
  • H Z, Lu J, Zhao H, et al. Functional long noncoding RNAs (lncRNAs) in clear cell kidney carcinoma revealed by reconstruction and comprehensive analysis of the lncRNA-miRNA-mRNA regulatory network [J]. Med Sci Monit. 2018;24:8250–8263.
  • F Z, R N, Shao X, et al. FGD5AS1 promotes cisplatin resistance of human lung adenocarcinoma cell via the miR1425p/PDL1 axis [J]. Int J Mol Med. 2021;47(2):523–532. DOI:10.3892/ijmm.2020.4816.
  • J GS, N RS, T LY, et al. Targeting EGFR sensitizes 5-Fu-resistant colon cancer cells through modification of the lncRNA-FGD5-AS1-miR-330-3p-Hexokinase 2 axis [J]. Mol Ther Oncolytics. 2021;23:14–25.
  • Li J, C L, Chen B, et al. LncRNA FGD5-AS1 facilitates the radioresistance of breast cancer cells by enhancing MACC1 expression through competitively sponging miR-497-5p [J]. Front Oncol. 2021;11:671853.
  • Yang W, Zhou J, Zhang K, et al. Identification and validation of the clinical roles of the VHL-related LncRNAs in clear cell renal cell carcinoma [J]. J Cancer. 2021;12(9):2702–2714. DOI:10.7150/jca.55113.
  • Qi X, Zhang D-H, Wu N, et al. ceRNA in cancer: possible functions and clinical implications [J]. J Med Genet. 2015;52(10):710. DOI:10.1136/jmedgenet-2015-103334.
  • E PP. Oral cancer prevention and control – the approach of the World Health Organization [J]. Oral Oncol. 2009;45(4):454–460.
  • Park J, Zhang X, K LS, et al. CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion [J]. J Clin Invest. 2019;129(12):5381–5399. DOI:10.1172/JCI125336.
  • Chao Ge JD, Yahui C, Sumin C, et al. LncRNA FGD5-AS1 promotes tumor growth by regulating MCL1 via sponging miR-153-3p in oral cancer. Aging. 2020;12(14):14355–14364 .
  • L L, Zhan Y, Huang Y, et al. LncRNA FGD5-AS1 can be predicted as therapeutic target in oral cancer [J]. J Oral Pathol Med. 2020;49(3):243–252. DOI:10.1111/jop.12989.
  • Y G, M X, Y G, et al. Long non-coding RNA FGD5-AS1 regulates cancer cell proliferation and chemoresistance in gastric cancer through miR-153-3p/CITED2 axis [J]. Front Genet. 2020;11:715.
  • H TK, Qian J. Long non-coding RNA FGD5-AS1 is an inducer of cisplatin chemoresistance in gastric cancer cells by sponging miR-195 [J]. J Biol Regul Homeost Agents. 2021;35(2):819–826.
  • L L, Zhang C, Wang J, et al. A high level of lncFGD5-AS1 inhibits epithelial-to-Mesenchymal transition by regulating the miR-196a-5p/SMAD6/BMP axis in gastric Cancer [J]. BMC Cancer. 2021;21(1):453. DOI:10.1186/s12885-021-08192-x.
  • Zhong J-H, Xiang X, Wang -Y-Y, et al. The lncRNA SNHG16 affects prognosis in hepatocellular carcinoma by regulating p62 expression [J]. J Cell Physiol. 2020;235(2):1090–1102. DOI:10.1002/jcp.29023.
  • Zhang J, W L. A key mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network linked to diagnosis and prognosis of Hepatocellular Carcinoma [J]. Front Oncol. 2020;10:340.
  • Yang Y, L S, Zhang D, et al. Long non-coding RNA FGD5-AS1 contributes to cisplatin resistance in hepatocellular carcinoma via sponging microRNA-153-3p by upregulating twinfilin actin binding protein 1 (TWF1) [J]. Bioengineered. 2021;12(1):6713–6723. DOI:10.1080/21655979.2021.1971484.
  • Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer [J]. Lancet. 2019;394(10207):1467–1480. DOI:10.1016/S0140-6736(19)32319-0.
  • Li D, Jiang X, Zhang X, et al. Long noncoding RNA FGD5-AS1 promotes colorectal cancer cell proliferation, migration, and invasion through upregulating CDCA7 via sponging miR-302e [J]. Vitro Cell Dev Biol Anim. 2019;55(8):577–585. DOI:10.1007/s11626-019-00376-x.
  • Montagnoli A, Moll J, Colotta F. Targeting cell division cycle 7 kinase: a new approach for cancer therapy [J]. Clin Cancer Res. 2010;16(18):4503–4508.
  • F C, P L, Y B, et al. Silencing of long non-coding RNA FGD5-AS1 inhibits the progression of non-small cell lung cancer by regulating the miR-493-5p/DDX5 axis [J]. Technol Cancer Res Treat. 2021;20:1533033821990007.
  • Y F, Li H, Yu Z, et al. Long non-coding RNA FGD5-AS1 promotes non-small cell lung cancer cell proliferation through sponging hsa-miR-107 to up-regulate FGFRL1 [J]. Biosci Rep. 2020;40(1):BSR20193309.
  • Lv J, Li Q, Ma R, et al. Long noncoding RNA FGD5-AS1 knockdown decrease viability, Migration, and invasion of non-small cell lung cancer (NSCLC) cells by regulating the MicroRNA-944/MACC1 axis [J]. Technol Cancer Res Treat. 2021;20:1533033821990090.
  • Fu J, H C, Wu Y, et al. Elevation of FGD5-AS1 contributes to cell progression by improving cisplatin resistance against non-small cell lung cancer cells through regulating miR-140-5p/WEE1 axis [J]. Gene. 2020;755:144886.
  • R L S, K D M, Jemal A. Cancer statistics, 2020 [J]. CA Cancer J Clin. 2020;70(1):7-30.
  • Costa RLB, Han H S, Gradishar WJ. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review [J]. Breast Cancer Res Treat. 2018;169(3):397–406.
  • Fang K, Xu ZJ, Jiang SX, et al. lncRNA FGD5AS1 promotes breast cancer progression by regulating the hsamiR1955p/NUAK2 axis [J]. Mol Med Rep. 2021;23(6). DOI:10.3892/mmr.2021.12099.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin. 2018;68(6):394–424. DOI:10.3322/caac.21492.
  • Meng Y, Chu T, Lin S, et al. Clinicopathological characteristics and prognosis of cervical cancer with different histological types: a population-based cohort study [J]. Gynecol Oncol. 2021;163(3):545–551. DOI:10.1016/j.ygyno.2021.10.007.
  • Cohen P, Jhingran A, Oaknin A, et al. Cervical cancer [J]. Lancet. 2019;393(10167):169–182. DOI:10.1016/S0140-6736(18)32470-X.
  • DS L, Wu J, Lombe D, et al. Immune correlates of therapy outcomes in women with cervical cancer treated with chemoradiotherapy: a systematic review [J]. Cancer Med. 2021;10(13):4206–4220. DOI:10.1002/cam4.4017.
  • Guo L, Hua K. Cervical cancer: emerging immune landscape and treatment [J]. Onco Targets Ther. 2020;13:8037–8047.
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation [J]. Nat Rev Immunol. 2008;8(12):958–969.
  • Ml S, De Palma M. Macrophage regulation of tumor angiogenesis: implications for cancer therapy [J]. Mol Aspects Med. 2011;32(2):123–145.
  • Liu G, Du X, XIAO L, et al. Activation of FGD5-AS1 promotes progression of cervical cancer through regulating BST2 to inhibit macrophage M1 Polarization [J]. J Immunol Res. 2021;2021:5857214.
  • Matulonis UA, Sood AK, Fallowfield L, et al. Ovarian cancer [J]. Nat Rev Dis Primers. 2016;2(1):16061. DOI:10.1038/nrdp.2016.61.
  • Zhao J, Song X, Xu T, et al. Identification of potential prognostic competing triplets in high-grade serous ovarian cancer [J]. Front Genet. 2020;11:607722.
  • Aichen Z, Kun W, Xiaochun S, et al. LncRNA FGD5-AS1 promotes the malignant phenotypes of ovarian cancer cells via targeting miR-142-5p [J]. Apoptosis. 2021;26(5–6):348–360. DOI:10.1007/s10495-021-01674-0.
  • Yang Y, D M-H, Hu H-M, et al. LncRNA FGD5-AS1 miR-5590-3p axis facilitates the proliferation and metastasis of renal cell carcinoma through ERK AKT signalling[J]. Eur Rev Med Pharmacol Sci. 2020;24(17):8756-8766.
  • Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary [J]. Neuro Oncol. 2021;23(8):1231–1251. DOI:10.1093/neuonc/noab106.
  • Cantrell JN, Waddle MR, Rotman M, et al. Progress toward long-term survivors of Glioblastoma [J]. Mayo Clin Proc. 2019;94(7):1278–1286. DOI:10.1016/j.mayocp.2018.11.031.
  • Touat M, Idbaih A, Sanson M, et al. Glioblastoma targeted therapy: updated approaches from recent biological insights [J]. Ann Oncol. 2017;28(7):1457–1472. DOI:10.1093/annonc/mdx106.
  • Lin JZ, Lin N, Zhao WJ. Identification and validation of a six-lncRNA prognostic signature with its ceRNA networks and candidate drugs in lower-grade gliomas [J]. Genomics. 2020;112(5):2990–3002.
  • Wu L, Zhu X, Song Z, et al. FGD5-AS1 facilitates glioblastoma progression by activation of Wnt/beta-catenin signaling via regulating miR-129-5p/HNRNPK axis [J]. Life Sci. 2020;256:117998.
  • Zhao JB, Xue JF, Zhang WZ, et al. Long noncoding RNA FGD5-AS1 promotes glioma cell proliferation, Migration and Invasion by regulating wnt/beta-catenin pathway [J]. Cancer Manag Res. 2020;12:6187–6193.
  • Su D, Ji Z, Xue P, et al. Long-noncoding RNA FGD5-AS1 enhances the viability, Migration, and invasion of Glioblastoma cells by regulating the miR-103a-3p/TPD52 axis [J]. Cancer Manag Res. 2020;12:6317–6329.
  • Messerschmitt PJ, Garcia RM, Abdul-Karim FW, et al. Osteosarcoma [J]. J Am Acad Orthop Surg. 2009;17(8):515–527. DOI:10.5435/00124635-200908000-00005.
  • Mirabello L, Troisi RJ, Savage SA. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons [J]. Int J Cancer. 2009;125(1):229–234.
  • Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program [J]. Cancer. 2009;115(7):1531–1543.
  • Wang Y, Zeng X, Wang N, et al. Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma [J]. Mol Cancer. 2018;17(1):89. DOI:10.1186/s12943-018-0837-6.
  • Song QH, Guo MJ, Zheng JS, et al. Study on targeting relationship between miR-320b and FGD5-AS1 and its effect on biological function of Osteosarcoma cells [J]. Cancer Manag Res. 2020;12:13589–13598.
  • Li C, Lin X, Zhang C, et al. Long non-coding RNA FGD5-AS1 enhances osteosarcoma cell proliferation and migration by targeting miR-506-3p/RAB3D axis [J]. Hum Cell. 2021;34(4):6317–6329. DOI:10.1007/s13577-021-00536-w.
  • Song K, Yu P, Zhang C, et al. The LncRNA FGD5-AS1/miR-497-5p axis regulates septin 2 (SEPT2) to accelerate cancer progression and increase cisplatin-resistance in laryngeal squamous cell carcinoma [J]. Mol Carcinog. 2021;60(7):1255–1265. DOI:10.1002/mc.23305.
  • Gao Y, Zhu H, Mao Q. Expression of lncRNA FGD5-AS1 correlates with poor prognosis in melanoma patients [J]. J Gene Med. 2020;22(12):e3278.
  • Lin J, Liao S, Liu Z, et al. LncRNA FGD5-AS1 accelerates cell proliferation in pancreatic cancer by regulating miR-520a-3p/KIAA1522 axis [J]. Cancer Biol Ther. 2021;22(3):257–266. DOI:10.1080/15384047.2021.1883184.
  • Tang Z, Kang B, Li C, et al. GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis [J]. Nucleic Acids Res. 2019;47(W1):W556–W60. DOI:10.1093/nar/gkz430.
  • Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus [J]. Cell. 2003;113(6):685–700.
  • Wang RN, Green J, Wang Z, et al. Bone Morphogenetic protein (BMP) signaling in development and human diseases [J]. Genes Dis. 2014;1(1):87–105. DOI:10.1016/j.gendis.2014.07.005.
  • Zou M-L, Chen Z-H, Teng -Y-Y, et al. The smad dependent TGF-β and BMP signaling pathway in bone remodeling and therapies [J]. Front Mol Biosci. 2021;8:593310.
  • Goto K, Kamiya Y, Imamura T, et al. Selective inhibitory effects of Smad6 on bone morphogenetic protein type I receptors [J]. J Biol Chem. 2007;282(28):20603–20611. DOI:10.1074/jbc.M702100200.
  • Miyazawa K, Miyazono K. Regulation of TGF-β family signaling by inhibitory smads [J]. Cold Spring Harb Perspect Biol. 2017;9(3):a022095.
  • Kim SD, S BJ, Lee J-H, et al. The malignancy of liver cancer cells is increased by IL-4/ERK/AKT signaling axis activity triggered by irradiated endothelial cells [J]. J Radiat Res. 2020;61(3):376–387. DOI:10.1093/jrr/rraa002.
  • W P, Wu A, Yu H, et al. NEAT1 negatively regulates cell proliferation and migration of Neuroblastoma Cells by miR-183-5p/FOXP1 Via the ERK/AKT pathway [J]. Cell Transplant. 2020;29:963689720943608.
  • Sun M, Shen Z. Knockdown of long non-coding RNA (lncRNA) colon cancer-associated transcript-1 (CCAT1) suppresses oral squamous cell carcinoma proliferation, Invasion, and Migration by inhibiting the discoidin domain receptor 2 (DDR2)/ERK/AKT axis [J]. Med Sci Monit. 2020;26:e920020.
  • Gagliardi PA, Dobrzynski M, Jacques MA, et al. Collective ERK/Akt activity waves orchestrate epithelial homeostasis by driving apoptosis-induced survival [J]. Dev Cell. 2021;56(12):1712–26 e6. DOI:10.1016/j.devcel.2021.05.007.
  • Maeda Y, Kawano Y, Wada Y, et al. C5aR is frequently expressed in metastatic renal cell carcinoma and plays a crucial role in cell invasion via the ERK and PI3 kinase pathways [J]. Oncol Rep. 2015;33(4):1844–1850. DOI:10.3892/or.2015.3800.
  • Zhu R, Ge J, Ma J, et al. Carcinoembryonic antigen related cell adhesion molecule 6 promotes the proliferation and migration of renal cancer cells through the ERK/AKT signaling pathway [J]. Transl Androl Urol. 2019;8(5):457–466. DOI:10.21037/tau.2019.09.02.
  • Aros CJ, Vijayaraj P, Pantoja CJ, et al. Distinct spatiotemporally dynamic wnt-secreting niches regulate proximal airway regeneration and aging [J]. Cell Stem Cell. 2020;27(3):413–29.e4. DOI:10.1016/j.stem.2020.06.019.
  • Jung Y-S, Park J-I. Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex [J]. Exp Mol Med. 2020;52(2):183–191.
  • Baarsma HA, Konigshoff M. ‘WNT-er is coming’: WNT signalling in chronic lung diseases [J]. Thorax. 2017;72(8):746–759.
  • Majidinia M, Aghazadeh J, Jahanban‐Esfahlani R, et al. The roles of Wnt/β-catenin pathway in tissue development and regenerative medicine [J]. J Cell Physiol. 2018;233(8):5598–5612. DOI:10.1002/jcp.26265.
  • Chatterjee A, Paul S, Bisht B, et al. Advances in targeting the WNT/beta-catenin signaling pathway in cancer [J]. Drug Discov Today. 2021;27(1):82–101. DOI:10.1016/j.drudis.2021.07.007.
  • Neiheisel A, Kaur M, Ma N, et al. Wnt pathway modulators in cancer therapeutics- an update on completed and ongoing clinical trials [J]. Int J Cancer. 2021;150(5):727–740. DOI:10.1002/ijc.33811.
  • Patel S, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy [J]. Mol Cancer Ther. 2015;14(4):1712–1726.e6.
  • Zhou Z, Zhao J, Q P, et al. PD-L1 expression is a predictive biomarker for CIK cell-based immunotherapy in postoperative patients with breast cancer [J]. J Immunother Cancer. 2019;7(1):228. DOI:10.1186/s40425-019-0696-8.
  • Li K, J L, Wu L, et al. Genomic correlates of programmed cell death ligand 1 (PD-L1) expression in Chinese lung adenocarcinoma patients [J]. Cancer Cell Int. 2022;22(1):138. DOI:10.1186/s12935-022-02488-z.
  • Goldberg M, Maris C, Hipkiss E, et al. Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells [J]. Blood. 2007;110(1):186–192. DOI:10.1182/blood-2006-12-062422.
  • Xia Y, Wang WC, Shen WH, et al. Thalidomide suppresses angiogenesis and immune evasion via lncRNA FGD5-AS1/miR-454-3p/ZEB1 axis-mediated VEGFA expression and PD-1/PD-L1 checkpoint in NSCLC [J]. Chem Biol Interact. 2021;349:109652.
  • Newsted D, Banerjee S, Watt K, et al. Blockade of TGF-β signaling with novel synthetic antibodies limits immune exclusion and improves chemotherapy response in metastatic ovarian cancer models [J]. Oncoimmunology. 2019;8(2):e1539613. DOI:10.1080/2162402X.2018.1539613.
  • Pitt J, Vétizou M, Daillère R, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors [J]. Immunity. 2016;44(6):1255–1269. DOI:10.1016/j.immuni.2016.06.001.